Geostatistical semi-supervised learning for spatial prediction

被引:4
|
作者
Fouedjio, Francky [1 ]
Talebi, Hassan [2 ]
机构
[1] Rio Tinto, Data & Analyt, 152-158 St Georges Terrace, Perth, WA 6000, Australia
[2] Rio Tinto, Dev & Technol, 152-158 St Georges Terrace, Perth, WA 6000, Australia
关键词
Labeled spatial data; Unlabeled spatial data; Spatial autocorrelation; Pseudo labeling; Spatial prediction; REMOTE-SENSING DATA; RANDOM FOREST; CLASSIFICATION; INTERPOLATION; ALGORITHMS; REGION;
D O I
10.1016/j.aiig.2022.12.002
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Geoscientists are increasingly tasked with spatially predicting a target variable in the presence of auxiliary information using supervised machine learning algorithms. Typically, the target variable is observed at a few sampling locations due to the relatively time-consuming and costly process of obtaining measurements. In contrast, auxiliary variables are often exhaustively observed within the region under study through the increasing development of remote sensing platforms and sensor networks. Supervised machine learning methods do not fully leverage this large amount of auxiliary spatial data. Indeed, in these methods, the training dataset includes only labeled data locations (where both target and auxiliary variables were measured). At the same time, unlabeled data locations (where auxiliary variables were measured but not the target variable) are not considered during the model training phase. Consequently, only a limited amount of auxiliary spatial data is utilized during the model training stage. As an alternative to supervised learning, semi-supervised learning, which learns from labeled as well as unlabeled data, can be used to address this problem. However, conventional semi-supervised learning techniques do not account for the specificities of spatial data. This paper introduces a spatial semi-supervised learning framework where geostatistics and machine learning are combined to harness a large amount of unlabeled spatial data in combination with typically a smaller set of labeled spatial data. The main idea consists of leveraging the target variable's spatial autocorrelation to generate pseudo labels at unlabeled data points that are geographically close to labeled data points. This is achieved through geostatistical conditional simulation, where an ensemble of pseudo labels is generated to account for the uncertainty in the pseudo labeling process. The observed labels are augmented by this ensemble of pseudo labels to create an ensemble of pseudo training datasets. A supervised machine learning model is then trained on each pseudo training dataset, followed by an aggregation of trained models. The proposed geostatistical semi-supervised learning method is applied to synthetic and real-world spatial datasets. Its predictive performance is compared with some classical supervised and semi-supervised machine learning methods. It appears that it can effectively leverage a large amount of unlabeled spatial data to improve the target variable's spatial prediction.
引用
收藏
页码:162 / 178
页数:17
相关论文
共 50 条
  • [21] Asymmetrical semi-supervised learning and prediction of disulfide connectivity in proteins
    Laboratoire d'Informatique Fondamentale , UMR CNRS 6166, Université de Provence
    Rev Intell Artif, 2006, 6 (673-695):
  • [22] Semi-supervised learning to improve generalizability of risk prediction models
    Chi, Shengqiang
    Li, Xinhang
    Tian, Yu
    Li, Jun
    Kong, Xiangxing
    Ding, Kefeng
    Weng, Chunhua
    Li, Jingsong
    JOURNAL OF BIOMEDICAL INFORMATICS, 2019, 92
  • [23] Protein Function Prediction Based on Active Semi-supervised Learning
    Wang Xuesong
    Cheng Yuhu
    Li Lijing
    CHINESE JOURNAL OF ELECTRONICS, 2016, 25 (04) : 595 - 600
  • [24] Semi-supervised learning by disagreement
    Zhou, Zhi-Hua
    Li, Ming
    KNOWLEDGE AND INFORMATION SYSTEMS, 2010, 24 (03) : 415 - 439
  • [25] A survey on semi-supervised learning
    Jesper E. van Engelen
    Holger H. Hoos
    Machine Learning, 2020, 109 : 373 - 440
  • [26] Semi-supervised Sequence Learning
    Dai, Andrew M.
    Le, Quoc V.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [27] Semi-supervised learning by disagreement
    Zhi-Hua Zhou
    Ming Li
    Knowledge and Information Systems, 2010, 24 : 415 - 439
  • [28] Semi-Supervised Incremental Learning
    Bouchachia, Abdelhamid
    Prossegger, Markus
    Duman, Hakan
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [29] Deep Semi-Supervised Learning
    Hailat, Zeyad
    Komarichev, Artem
    Chen, Xue-Wen
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2154 - 2159
  • [30] Semi-Supervised Learning by Disagreement
    Zhou, Zhi-Hua
    2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 93 - 93