CLHGNNMDA: Hypergraph Neural Network Model Enhanced by Contrastive Learning for miRNA-Disease Association Prediction

被引:0
|
作者
Zhu, Rong [1 ]
Wang, Yong [2 ]
Dai, Ling-Yun [1 ]
机构
[1] Qufu Normal Univ, Sch Comp Sci, 80 Yantai Rd, Rizhao 276826, Shandong, Peoples R China
[2] Qufu Normal Univ, Lab Expt Teaching & Equipment Management Ctr, Rizhao, Peoples R China
基金
中国国家自然科学基金;
关键词
contrastive learning; five-fold cross-validation; hypergraph neural network; miRNA-disease association prediction;
D O I
10.1089/cmb.2024.0720
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Numerous biological experiments have demonstrated that microRNA (miRNA) is involved in gene regulation within cells, and mutations and abnormal expression of miRNA can cause a myriad of intricate diseases. Forecasting the association between miRNA and diseases can enhance disease prevention and treatment and accelerate drug research, which holds considerable importance for the development of clinical medicine and drug research. This investigation introduces a contrastive learning-augmented hypergraph neural network model, termed CLHGNNMDA, aimed at predicting associations between miRNAs and diseases. Initially, CLHGNNMDA constructs multiple hypergraphs by leveraging diverse similarity metrics related to miRNAs and diseases. Subsequently, hypergraph convolution is applied to each hypergraph to extract feature representations for nodes and hyperedges. Following this, autoencoders are employed to reconstruct information regarding the feature representations of nodes and hyperedges and to integrate various features of miRNAs and diseases extracted from each hypergraph. Finally, a joint contrastive loss function is utilized to refine the model and optimize its parameters. The CLHGNNMDA framework employs multi-hypergraph contrastive learning for the construction of a contrastive loss function. This approach takes into account inter-view interactions and upholds the principle of consistency, thereby augmenting the model's representational efficacy. The results obtained from fivefold cross-validation substantiate that the CLHGNNMDA algorithm achieves a mean area under the receiver operating characteristic curve of 0.9635 and a mean area under the precision-recall curve of 0.9656. These metrics are notably superior to those attained by contemporary state-of-the-art methodologies.
引用
收藏
页码:47 / 63
页数:17
相关论文
共 50 条
  • [31] RSANMDA: Resampling based subview attention network for miRNA-disease association prediction
    Luo, Longfei
    Tan, Zhuokun
    Wang, Shunfang
    METHODS, 2024, 230 : 99 - 107
  • [32] SGLMDA: A Subgraph Learning-Based Method for miRNA-Disease Association Prediction
    Ji, Cunmei
    Yu, Ning
    Wang, Yutian
    Ni, Jiancheng
    Zheng, Chunhou
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (05) : 1191 - 1201
  • [33] LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction
    Chen, Xing
    Huang, Li
    PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (12)
  • [34] HAMDA: Hybrid Approach for MiRNA-Disease Association prediction
    Chen, Xing
    Niu, Ya-Wei
    Wang, Guang-Hui
    Yan, Gui-Ying
    JOURNAL OF BIOMEDICAL INFORMATICS, 2017, 76 : 50 - 58
  • [35] miRNA-Disease Association Prediction with Collaborative Matrix Factorization
    Shen, Zhen
    Zhang, You-Hua
    Han, Kyungsook
    Nandi, Asoke K.
    Honig, Barry
    Huang, De-Shuang
    COMPLEXITY, 2017,
  • [36] A novel computational model based on super-disease and miRNA for potential miRNA-disease association prediction
    Chen, Xing
    Jiang, Zhi-Chao
    Xie, Di
    Huang, De-Shuang
    Zhao, Qi
    Yan, Gui-Ying
    You, Zhu-Hong
    MOLECULAR BIOSYSTEMS, 2017, 13 (06) : 1202 - 1212
  • [37] A Novel Computational Method for MiRNA-Disease Association Prediction
    Jiang, Zhi-Chao
    Shen, Zhen
    Bao, Wenzheng
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT I, 2017, 10361 : 539 - 547
  • [38] MCMDA: Matrix completion for MiRNA-disease association prediction
    Li, Jian-Qiang
    Rong, Zhi-Hao
    Chen, Xing
    Yan, Gui-Ying
    You, Zhu-Hong
    ONCOTARGET, 2017, 8 (13) : 21187 - 21199
  • [39] GRMDA: Graph Regression for MiRNA-Disease Association Prediction
    Chen, Xing
    Yang, Jing-Ru
    Guan, Na-Na
    Li, Jian-Qiang
    FRONTIERS IN PHYSIOLOGY, 2018, 9
  • [40] Prediction of miRNA-disease association based on heterogeneous hypergraph convolution and heterogeneous graph multi-scale convolution
    Dai, Wei
    Pang, Sifan
    He, Zhichen
    Fu, Xiaodong
    Liu, Li
    Liu, Lijun
    Yu, Ning
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2024, 13 (01):