Preparation and electrochemical performance of Na0.67Mn0.67Fe0.2Co0.1Cu0.03O2 cathode material for sodium-ion batteries☆

被引:0
|
作者
Wen, Fengchun [1 ]
Liao, Juan [1 ]
Lan, Jiayi [1 ]
Gan, Linfeng [1 ]
Huang, Zhenqian [1 ]
Jiang, Qi [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Life Sci & Engn, Key Lab Adv Technol Mat, Key Lab Magnet Suspens Technol & Maglev Vehicle,Mi, Chengdu 610031, Peoples R China
关键词
P2-layered oxide cathode; Anionic redox reaction; High-performance; Mn-Fe-Co-Cu system; Sodium-ion batteries; POSITIVE ELECTRODE; HIGH-VOLTAGE; P2-TYPE; SUBSTITUTION; CU;
D O I
10.1016/j.cej.2025.161239
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mn-based layered oxides were considered one of the most promising cathode materials for sodium-ion batteries due to their high specific capacity and abundant resources. At present, they had the problems of low Na+ migration rate and poor phase transition during cycling, resulting in low cycle stability. In this paper, a Cu-O surface was introduced to construct Mn-Fe-Co-Cu system, and a new P2-type cathode material Na0.67Mn0.7xFe0.2Co0.1CuxO2 (P2-NaMFCCO-x) was prepared by combining complexation chemical precipitation with high temperature calcination to improve its cycling performance. The obtained materials were characterized by XRD, Raman and XPS. At the same time, their corresponding electrochemical performance were tested. The results showed that P2-NaMFCCO-0.03 could maintain P2 phase during the 2.0-4.2 V charging and discharging, and the undesirable phase transition (P2-O2/OP4 phase transition) could be effectively inhibited, showing high cycling stability and air stability. It exhibited a high initial discharge specific capacity of 217mAh g- 1 at 0.1C and maintained a capacity retention rate of about 90.3 % after 200 cycles at 5C. All these indicated that Mn-Fe-Co-Cu system was an effective way to obtain excellent electrochemical properties of cathode materials for sodium-ion batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Stable Electrochemical Properties of Magnesium-Doped Co-Free Layered P2-Type Na0.67Ni0.33Mn0.67O2Cathode Material for Sodium Ion Batteries
    Feng, Jie
    Luo, Shao-Hua
    Wang, Jiachen
    Li, Pengwei
    Yan, Shengxue
    Li, Junzhe
    Hou, Peng-Qing
    Wang, Qing
    Zhang, Yahui
    Liu, Xin
    ACS Sustainable Chemistry and Engineering, 2022, 10 (15): : 4994 - 5004
  • [42] Stable Electrochemical Properties of Magnesium-Doped Co-Free Layered P2-Type Na0.67Ni0.33Mn0.67O2 Cathode Material for Sodium Ion Batteries
    Feng, Jie
    Luo, Shao-hua
    Wang, Jiachen
    Li, Pengwei
    Yan, Shengxue
    Li, Junzhe
    Hou, Peng-qing
    Wang, Qing
    Zhang, Yahui
    Liu, Xin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (15): : 4994 - 5004
  • [43] Evaluation of electrochemical performance and redox activity of Fe in Ti doped layered P2-Na0.67Mn0.5Fe0.5O2 cathode for sodium ion batteries
    Darbar, Devendrasinh
    Muralidharan, Nitin
    Hermann, Raphael P.
    Nanda, Jagjit
    Bhattacharya, Indranil
    ELECTROCHIMICA ACTA, 2021, 380
  • [44] P2-type Na0.67Ni0.33-x Cu x Mn0.67O2 as new high-voltage cathode materials for sodium-ion batteries
    Chen, Sen
    Han, Enshan
    Xu, Han
    Zhu, Lingzhi
    Liu, Bin
    Zhang, Guangquan
    Lu, Min
    IONICS, 2017, 23 (11) : 3057 - 3066
  • [45] P2-type Na0.67Fe0.3Mn0.3Co0.4O2 cathodes for high-performance sodium-ion batteries
    Zhou, Dengmei
    Huang, Wanxia
    Zhao, Fenglin
    SOLID STATE IONICS, 2018, 322 : 18 - 23
  • [46] Rational design of Na0.67Ni0.2Co0.2Mn0.6O2 microsphere cathode material for stable and low temperature sodium ion storage
    Wang, Xuan
    Yin, Xiuping
    Feng, Xiaochen
    Li, Yong
    Dong, Xiping
    Shi, Qinhao
    Zhao, Yufeng
    Zhang, Jiujun
    CHEMICAL ENGINEERING JOURNAL, 2022, 428
  • [47] P2-type Fe and Mn-based Na0.67Ni0.15Fe0.35Mn0.3Ti0.2O2 as cathode material with high energy density and structural stability for sodium-ion batteries
    Lan, Tianxiang
    Wei, Wenfei
    Xiao, Shuai
    He, Gang
    Hong, Jianhe
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (12) : 9423 - 9429
  • [48] P2-type Fe and Mn-based Na0.67Ni0.15Fe0.35Mn0.3Ti0.2O2 as cathode material with high energy density and structural stability for sodium-ion batteries
    Tianxiang Lan
    Wenfei Wei
    Shuai Xiao
    Gang He
    Jianhe Hong
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 9423 - 9429
  • [49] X-ray absorption spectromicroscopy of Na0.67Fe0.25Mn0.75O2 and Na0.67Li0.2Fe0.2Mn0.6O2 primary particles for Na-ion batteries
    Shin, Hyun-Joon
    Jung, Young Hwa
    Kim, Mikang
    Kim, Namdong
    Wang, Ji Eun
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2023, 177
  • [50] Fabrication of Na0.67Li0.05Ni0.28Mn0.67O2 Cathode with Synergistic Engineering of Li-Doping and Mn-Precursor for High-Performance Sodium-Ion Batteries
    Lin, Xiongfeng
    Zhang, Junjun
    Cao, Daxian
    Yang, Hangcheng
    Chai, Weizhou
    Wang, Shuoyu
    Chen, Yu
    Wang, Hongkang
    ENERGY & FUELS, 2025,