Unsupervised mapping of rice paddy fields and their inundation patterns using Sentinel-1 SAR images and GIS

被引:0
|
作者
McGiven, Lauren E. [1 ]
Mueller, Marc F. [1 ,2 ]
机构
[1] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA
[2] Swiss Fed Inst Aquat Sci & Technol, Eawag, Dept Syst Anal Integrated Assessment & Modelling, Dubendorf, Switzerland
基金
美国国家科学基金会;
关键词
SAR; rice paddy detection; temporal mapping; unsupervised classification; Sentinel-1; flooding; LANDSAT; 8; OLI; TIME-SERIES; PLANTING AREA; WATER;
D O I
10.1080/22797254.2025.2484711
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The periodic flooding of rice paddies presents significant environmental challenges, including methane emissions, fertilizer pollution, and water resource stress. This study introduces a scalable approach using high-resolution (10 m) Sentinel-1 SAR imagery and Global Surface Water Extent rasters to map rice paddies and their flooding patterns. Temporal variations in SAR backscatter are condensed into a custom multi-band image for each planting season, enabling unsupervised classification to delineate rice paddies and flooding patches. This approach achieves high detection accuracy, with overall accuracy rates for paddy detection of 83.8%-89.0% in Japan, 71.5%-83.5% in the Philippines, and 72.3% for rice flooding patches in Bali, Indonesia. Unlike most existing methods, our approach does not rely on ancillary data or context-specific information for training or labeling, making it scalable and adaptable across diverse geographies. We explore this potential by examining the method's underlying assumptions and identifying areas where these assumptions may be challenged.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Sentinel-1 SAR Images of Inland Waterways Traffic
    Alexandrov, Chavdar
    Kolev, Nikolay
    Sivkov, Yordan
    Hristov, Avgustin
    Tsvetkov, Miroslav
    2018 20TH INTERNATIONAL SYMPOSIUM ON ELECTRICAL APPARATUS AND TECHNOLOGIES (SIELA), 2018,
  • [42] A systematic method for spatio-temporal phenology estimation of paddy rice using time series Sentinel-1 images
    Yang, Huijin
    Pan, Bin
    Li, Ning
    Wang, Wei
    Zhang, Jian
    Zhang, Xianlong
    REMOTE SENSING OF ENVIRONMENT, 2021, 259 (259)
  • [43] Mangrove forests mapping using Sentinel-1 and Sentinel-2 satellite images
    Alireza Sharifi
    Shilan Felegari
    Aqil Tariq
    Arabian Journal of Geosciences, 2022, 15 (20)
  • [44] A novel red-edge vegetable index for paddy rice mapping based on Sentinel-1/2 and GF-6 images
    Wan, Yiliang
    Gong, Yueqi
    Xu, Feng
    Shi, Wenzhong
    Gao, Wei
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
  • [45] A change detection approach to flood inundation mapping using multi-temporal Sentinel-1 SAR images, the Brahmaputra River, Assam (India): 2015-2020
    Vekaria, Darshil
    Chander, Shard
    Singh, R. P.
    Dixit, Sudhanshu
    JOURNAL OF EARTH SYSTEM SCIENCE, 2022, 132 (01)
  • [46] Wind direction retrieval from Sentinel-1 SAR images using ResNet
    Zanchetta, Andrea
    Zecchetto, Stefano
    REMOTE SENSING OF ENVIRONMENT, 2021, 253
  • [47] A generalized model for mapping sunflower areas using Sentinel-1 SAR data
    Qadir, Abdul
    Skakun, Sergii
    Kussul, Nataliia
    Shelestov, Andrii
    Becker-Reshef, Inbal
    REMOTE SENSING OF ENVIRONMENT, 2024, 306
  • [48] Built-up area mapping using Sentinel-1 SAR data
    Verma, Abhinav
    Bhattacharya, Avik
    Dey, Subhadip
    Lopez-Martinez, Carlos
    Gamba, Paolo
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 203 : 55 - 70
  • [49] Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data
    Marzi, David
    Gamba, Paolo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 11789 - 11799
  • [50] REMOTE SENSING FOR FLOOD INUNDATION MAPPING USING VARIOUS PROCESSING METHODS WITH SENTINEL-1 AND SENTINEL-2
    Stoyanova, E.
    39TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT ISRSE-39 FROM HUMAN NEEDS TO SDGS, VOL. 48-M-1, 2023, : 339 - 346