Averaging principle on semi-axis for semi-linear differential equations

被引:0
|
作者
Cheban, David [1 ]
机构
[1] State Univ Moldova, Dept Math, Lab Fundamental & Appl Math, A Mateevich St 60, MD-2009 Kishinev, Moldova
关键词
asymptotically Bohr/Levitan almost periodic solutions; averaging principle on semi-axis; bounded solutions; hyperbolic sectorial operator; semi-linear equations; shift dynamical system;
D O I
10.1002/mana.202300392
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish an averaging principle on the real semi-axis for semi-linear equation x '=epsilon(Ax+f(t)+F(t,x))$$\begin{equation*} \hspace*{9pc}x<^>{\prime }=\varepsilon (\mathcal {A} x+f(t)+F(t,x)) \end{equation*}$$with unbounded closed linear operator A$\mathcal {A}$ and asymptotically Poisson stable (in particular, asymptotically stationary, asymptotically periodic, asymptotically quasi-periodic, asymptotically almost periodic, asymptotically almost automorphic, asymptotically recurrent) coefficients. Under some conditions, we prove that there exists at least one solution, which possesses the same asymptotically recurrence property as the coefficients, in a small neighborhood of the stationary solution to the averaged equation, and this solution converges to the stationary solution of averaged equation uniformly on the real semi-axis when the small parameter approaches to zero.
引用
收藏
页码:156 / 189
页数:34
相关论文
共 50 条
  • [41] A PROBABILISTIC TREATMENT OF SEMI-LINEAR PARABOLIC EQUATIONS
    SIRAO, T
    PROCEEDINGS OF THE JAPAN ACADEMY, 1966, 42 (08): : 885 - &
  • [42] Semi-linear wave equations with effective damping
    D'Abbicco, Marcello
    Lucente, Sandra
    Reissig, Michael
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (03) : 345 - 380
  • [43] Toward the theory of semi-linear Beltrami equations
    Gutlyanskii, Vladimir
    Nesmelova, Olga
    Ryazanov, Vladimir
    Yakubov, Eduard
    CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2023, 6 (03): : 151 - 163
  • [44] Low regularity semi-linear wave equations
    Tao, T
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (3-4) : 599 - 629
  • [45] Quasiconformal Mappings in the Theory of Semi-linear Equations
    Gutlyanskii, V.
    Ryazanov, V.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2018, 39 (09) : 1343 - 1352
  • [46] ON SOLUTIONS OF SEMI-LINEAR WAVE-EQUATIONS
    EBIHARA, Y
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (05) : 467 - 486
  • [47] On the Hilbert problem for semi-linear Beltrami equations
    Gutlyanskiĭ V.
    Ryazanov V.
    Nesmelova O.
    Yakubov E.
    Journal of Mathematical Sciences, 2023, 270 (3) : 428 - 448
  • [48] Differential invariants for quasi-linear and semi-linear wave-type equations
    Sophocleous, C.
    Tracina, R.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (01) : 216 - 228
  • [49] NORMAL EXTENSIONS OF A SINGULAR DIFFERENTIAL OPERATOR ON THE RIGHT SEMI-AXIS
    Ismailov, Z. I.
    Mert, R. Ozturk
    EURASIAN MATHEMATICAL JOURNAL, 2014, 5 (03): : 117 - 124
  • [50] Solvability of an autonomous differential equation with aftereffect on the negative semi-axis
    Balandin A.S.
    Sabatulina T.L.
    Russian Mathematics, 2017, 61 (10) : 21 - 31