Pyrolyzed iron-cobalt/polypyrrole/reduced graphene oxide as an effective cathode electrocatalyst for oxygen reduction reaction in an alkaline medium

被引:1
|
作者
Necesito, Hannah Grace G. [1 ,2 ]
Garcia, Jonyl L. [2 ,4 ]
Dzmarado, Eric Selorm [5 ,6 ]
Miyao, Toshihiro [5 ,6 ]
Inukai, Junji [5 ,6 ]
Tongol, Bernard John V. [1 ,2 ,3 ]
机构
[1] Univ Santo Tomas, Coll Sci, Res Ctr Nat & Appl Sci, Manila 1015, Philippines
[2] Univ Santo Tomas, Coll Sci, Grad Sch, Manila 1015, Philippines
[3] Univ Santo Tomas, Coll Sci, Dept Chem, Manila 1015, Philippines
[4] Adamson Univ, Coll Sci, Chem Dept, 900 San Marcelino St, Manila 1000, Philippines
[5] Univ Yamanashi, Hydrogen & Fuel Cell Nanomat Ctr, 6-43 Miyamae, Kofu 4000021, Japan
[6] Univ Yamanashi, Clean Energy Res Ctr, 4-3-11 Takeda, Kofu, Yamanashi 4008510, Japan
关键词
Oxygen reduction reaction; Non-precious metal electrocatalysts; Reduced graphene oxide; Conducting polymers; Stability; NITROGEN-DOPED GRAPHENE; CARBON NANOTUBES; RATIONAL DESIGN; COBALT; CATALYSTS; POLYPYRROLE; PERFORMANCE; ORR; COMPOSITES; ENERGY;
D O I
10.1016/j.jpcs.2025.112556
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The slow kinetics of the oxygen reduction reaction (ORR) catalyzed by cathode electrocatalysts in fuel cells and metal-air batteries is a major problem. In this study, a composite material consisting of Fe and Co on polypyrrole (PPy)/graphene oxide (GO) support was prepared. The resulting iron-cobalt/polypyrrole/graphene oxide (FeCo/ PPy/GO) composite was then pyrolyzed at 900 degrees C using a tube furnace under N2 atmosphere at a ramp rate of 5 degrees C min- 1 for 1 h. The resulting pyrolyzed electrocatalyst, 900FeCo/PPy/rGO, was characterized using various materials characterization techniques. The effect of pyrolysis temperature (i.e., 800, 900, 1000 degrees C) of FeCo/PPy/ rGO on the ORR activity was investigated using CV and LSV. The 900FeCo/PPy/rGO catalyst composite exhibited the best ORR activity with an onset potential of -0.08 V and a half-wave potential at approximately -0.18 V with an electron transfer number of 3.79, compared to 800FeCo/PPy/rGO and 1000FeCo/PPy/rGO composites. Moreover, the 900FeCo/PPy/rGO catalyst composite showed significantly better electrochemical stability than the benchmark 20 % Pt/C. These results suggest that 900FeCo/PPy/rGO could be a cost-effective substitute for Pt-based ORR electrocatalysts.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Investigation of electrocatalytic activity on a N-doped reduced graphene oxide surface for the oxygen reduction reaction in an alkaline medium
    Chanda, Debabrata
    Dobrota, Ana S.
    Hnat, Jaromir
    Sofer, Zdenek
    Pasti, Igor A.
    Skorodumova, Natalia, V
    Paidar, Martin
    Bouzek, Karel
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (27) : 12129 - 12139
  • [22] Pyrolyzed binuclear-cobalt-phthalocyanine as electrocatalyst for oxygen reduction reaction in microbial fuel cells
    Li, Baitao
    Wang, Mian
    Zhou, Xiuxiu
    Wang, Xiujun
    Liu, Bingchuan
    Li, Baikun
    BIORESOURCE TECHNOLOGY, 2015, 193 : 545 - 548
  • [23] A reduced graphene oxide/covalent cobalt porphyrin framework for efficient oxygen reduction reaction
    Zuo, Quan
    Cheng, Gongzhen
    Luo, Wei
    DALTON TRANSACTIONS, 2017, 46 (29) : 9344 - 9348
  • [24] A Self-Assembly Route to an Iron Phthalocyanine/Reduced Graphene Oxide Hybrid Electrocatalyst Affording an Ultrafast Oxygen Reduction Reaction
    Taniguchi, Takaaki
    Tateishi, Hikaru
    Miyamoto, Shinnsuke
    Hatakeyama, Kazuto
    Ogata, Chikako
    Funatsu, Asami
    Hayami, Shinya
    Makinose, Yuki
    Matsushita, Nobuhiro
    Koinuma, Michio
    Matsumoto, Yasumichi
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2013, 30 (12) : 1063 - 1070
  • [25] Effect of Carbon Supports on Oxygen Reduction Reaction of Iron/Cobalt Electrocatalyst
    Anuar, S. A.
    Loh, K. S.
    Samad, S.
    Abidin, A. F. Zainul
    Wong, W. Y.
    Mohamad, A. B.
    Lee, T. K.
    INTERNATIONAL JOURNAL OF NANOELECTRONICS AND MATERIALS, 2020, 13 : 225 - 232
  • [26] Reduced graphene oxide-supported Pd@Au bimetallic nano electrocatalyst for enhanced oxygen reduction reaction in alkaline media
    Raghavendra, P.
    Reddy, G. Vishwakshan
    Sivasubramanian, R.
    Chandana, P. Sri
    Sarma, L. Subramanyam
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (08) : 4125 - 4135
  • [27] 3D cobalt-embedded nitrogen-doped graphene xerogel as an efficient electrocatalyst for oxygen reduction reaction in an alkaline medium
    Yu, Dingling
    He, Xingquan
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2017, 47 (01) : 13 - 23
  • [28] A novel cobalt tetranitrophthalocyanine/graphene composite assembled by an in situ solvothermal synthesis method as a highly efficient electrocatalyst for the oxygen reduction reaction in alkaline medium
    Lv, Guojun
    Cui, Lili
    Wu, Yanying
    Liu, Ying
    Pu, Tao
    He, Xingquan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (31) : 13093 - 13100
  • [29] 3D cobalt-embedded nitrogen-doped graphene xerogel as an efficient electrocatalyst for oxygen reduction reaction in an alkaline medium
    Dingling Yu
    Xingquan He
    Journal of Applied Electrochemistry, 2017, 47 : 13 - 23
  • [30] Manganese Oxide/Reduced Graphene Oxide Nanocomposite for High-Efficient Electrocatalyst Towards Oxygen Reduction Reaction
    Kosasang, Soracha
    Ma, Nattapol
    Phattharasupakun, Nutthaphon
    Wutthiprom, Juthaporn
    Limtrakul, Jumras
    Sawangphruk, Montree
    SELECTED PROCEEDINGS FROM THE 233RD ECS MEETING, 2018, 85 (13): : 1265 - 1276