Fusion of capsules to produce liquid-filled monoliths for carbon capture

被引:0
|
作者
Hsieh, Chia-Min [1 ]
Al-Mahbobi, Luma [2 ]
Dasari, Smita S. [3 ]
Avais, Mohd [2 ]
Cao, Huaixuan [3 ]
Wei, Peiran [4 ]
Wang, Yifei [2 ]
Green, Micah J. [3 ]
Pentzer, Emily B. [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77840 USA
[3] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA
[4] Texas A&M Univ, Soft Matter Facil, 1313 Res Pkwy, College Stn, TX 77845 USA
基金
美国国家科学基金会;
关键词
ENERGY-STORAGE; LINKED POLYMER; DISULFIDE; REDUCTION; PERFORMANCE; COMPOSITE; KINETICS; PURINES;
D O I
10.1039/d4ta04906c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-liquid composites (SLCs) combine the properties of solids and liquids, enhancing functionalities and expanding potential applications. Traditional methods for creating SLCs often face challenges such as low mass transfer efficiency, difficulty in controlling separation behavior, and substantial waste production. Herein, we report a new approach to solve these challenges by using disulfide-based responsive polymeric capsule shells to make liquid-filled monoliths for carbon capture. The capsules are prepared through interfacial polymerization and contain either non-polar poly(alpha-olefin)(432) or highly polar 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([HMIM][TFSI]) at 74-82 wt%. Upon gentle heating, the dynamic disulfide bonds of the isolated capsules undergo bond exchange, leading to the fusion of capsule shells into free-standing monoliths that retain >89 wt% of their liquid core and remain stable for at least two weeks. These monoliths demonstrate CO2 absorption rates and capacities comparable to their capsule counterparts; further, in response to radiofrequency (RF), they reach the CO2 desorption temperature in only similar to 31 s. This innovative system addresses the limitations of conventional SLC fabrication techniques, offering a versatile and practical approach to fusing polymer capsule shells for applications across separation, energy storage, and carbon capture applications.
引用
收藏
页码:29749 / 29762
页数:14
相关论文
共 50 条
  • [41] Liquid-filled tunable lenticular lens
    Iimura, Yoshinobu
    Onoe, Hiroaki
    Teshima, Tetsuhiko
    Heo, Yun Jung
    Yoshida, Shotaro
    Morimoto, Yuya
    Takeuchi, Shoji
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2015, 25 (03)
  • [42] SURFACE DIFFUSION IN LIQUID-FILLED PORES
    KOMIYAMA, H
    SMITH, JM
    AICHE JOURNAL, 1974, 20 (06) : 1110 - 1117
  • [43] Fire exposure of liquid-filled vessels
    Simpson, LL
    PROCESS SAFETY PROGRESS, 2003, 22 (01) : 27 - 32
  • [44] ACOUSTIC PROPERTIES OF LIQUID-FILLED SANDS
    NOLLE, AW
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1954, 26 (01): : 149 - 149
  • [45] LARGE LIQUID-FILLED PLASTIC LENSES
    TELFORD, JW
    THORNDIKE, NS
    JOURNAL OF SCIENTIFIC INSTRUMENTS, 1956, 33 (03): : 123 - 123
  • [46] Stability of a spinning liquid-filled spacecraft
    G. W. Bao
    M. Pascal
    Archive of Applied Mechanics, 1997, 67 : 407 - 421
  • [47] Adhesion of a liquid-filled spherical membrane
    Shanahan, M.E.R. (martin.shanahan@ema.fr), 1600, Taylor and Francis Ltd. (79):
  • [48] Monodisperse Liquid-filled Biodegradable Microcapsules
    Cory Berkland
    Emily Pollauf
    Neel Varde
    Daniel W. Pack
    Kyekyoon (Kevin) Kim
    Pharmaceutical Research, 2007, 24 : 1007 - 1013
  • [49] Vibration of a liquid-filled capillary tube
    Liu, Shaobao
    Wu, Yufei
    Yang, Fan
    Li, Moxiao
    Kou, Xing
    Lei, Changsheng
    Xu, Feng
    Lu, Tian Jian
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 106
  • [50] Liquid-filled varifocal lens on a chip
    Choi, Seung Tae
    Lee, Jeong Yub
    Kwon, Jong Oh
    Lee, Seungwan
    Kim, Woonbae
    MOEMS AND MINIATURIZED SYSTEMS VIII, 2009, 7208