Role of catalyst layer composition in the degradation of low platinum-loaded proton exchange membrane fuel cell cathodes: An experimental analysis

被引:3
|
作者
Saeidfar, Asal [1 ]
Kirlioglu, Ahmet Can [1 ]
Gursel, Selmiye Alkan [1 ,2 ]
Yesilyurt, Serhat [1 ,2 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[2] Sabanci Univ, Nanotechnol Res & Applicat Ctr, Istanbul, Turkiye
关键词
Proton exchange membrane fuel cell (PEMFC); Low platinum (Pt)-loaded cathodes; Catalyst layer composition; Electrode degradation; Pt dissolution; Carbon corrosion; CARBON CORROSION; HIGH-PERFORMANCE; SUPPORT CORROSION; PEMFC; IMPACT; ELECTRODES; MODEL; DISSOLUTION; DURABILITY; MECHANISM;
D O I
10.1016/j.jpowsour.2024.235676
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study investigates the impact of catalyst layer (CL) composition on the performance and durability of proton exchange membrane fuel cells (PEMFCs). Membrane electrode assemblies (MEAs) are manufactured using six different cathode CLs (CCLs) by varying the platinum (Pt)-loading, Pt-to-carbon weight percentages (Pt/C wt.%), mass fraction of bare carbon particles, carbon support material, and CL thicknesses. Each MEA is subjected to comprehensive electrochemical characterization procedures followed by one of the two different accelerated stress tests (ASTs) to analyze the impacts of Pt-dissolution and carbon corrosion degradation mechanisms separately. Experimental results show that the Pt/C wt.% and CL thickness have a dominant role in the rate of Pt- dissolution. While the addition of bare carbon particles decreases the rate of Pt-dissolution degradation, lower Pt/C wt.% causes higher performance loss. The carbon corrosion degradation is more pronounced in high Pt- loaded CLs since Pt particles catalyze the carbon oxidation reaction, whereas for constant Pt-loaded CLs, higher Pt utilization leads to increased degradation and CCL thinning, as observed through post-mortem scanning electron microscopy (SEM). No significant relation is found between the carbon corrosion rate and the CL thickness.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Low-loaded catalyst layers for proton exchange membrane fuel cell dynamic operation part 1: Experimental study
    Vandenberghe, Florent
    Micoud, Fabrice
    Schott, Pascal
    Morin, Arnaud
    Lafforgue, Clemence
    Chatenet, Marian
    ELECTROCHIMICA ACTA, 2025, 511
  • [12] Investigation of non-platinum based electrocatalysts for proton exchange membrane fuel cell cathodes
    Amolins, Michael W.
    Wang, Xiaoping
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [13] Nanofiber Cathode Catalyst Layer Model for a Proton Exchange Membrane Fuel Cell
    Dever, Dennis O.
    Cairncross, Richard A.
    Elabd, Yossef A.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2014, 11 (04):
  • [14] Catalyst gradient for cathode active layer of proton exchange membrane fuel cell
    Antoine, O
    Bultel, Y
    Ozil, P
    Durand, R
    ELECTROCHIMICA ACTA, 2000, 45 (27) : 4493 - 4500
  • [15] Preparation, Performance and Challenges of Catalyst Layer for Proton Exchange Membrane Fuel Cell
    Xie, Meng
    Chu, Tiankuo
    Wang, Tiantian
    Wan, Kechuang
    Yang, Daijun
    Li, Bing
    Ming, Pingwen
    Zhang, Cunman
    MEMBRANES, 2021, 11 (11)
  • [16] AN INTELLIGENT SYSTEM OF CATALYST LAYER DEPOSITION FOR PROTON EXCHANGE MEMBRANE FUEL CELL
    Wang, En-Jung James
    Lee, Min-Fan Ricky
    Ko, Cheng-Hao Kevin
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2010, 33 (01) : 89 - 98
  • [17] Efficient catalyst layer with ultra-low Pt loading for proton exchange membrane fuel cell
    Hao, Chao
    Meng, Qinghao
    Yan, Bowen
    Liu, Jia
    Yang, Bin
    Feng, Ligang
    Shen, Pei Kang
    Tian, Zhi Qun
    CHEMICAL ENGINEERING JOURNAL, 2023, 472
  • [18] Nanostructured Carbons as Platinum Catalyst Supports for Proton Exchange Membrane Fuel Cell Electrodes
    Nathalie Job
    Sandrine Berthon-Fabry
    Marian Chatenet
    Julien Marie
    Mathilde Brigaudet
    Jean-Paul Pirard
    Topics in Catalysis, 2009, 52
  • [19] Nanostructured Carbons as Platinum Catalyst Supports for Proton Exchange Membrane Fuel Cell Electrodes
    Job, Nathalie
    Berthon-Fabry, Sandrine
    Chatenet, Marian
    Marie, Julien
    Brigaudet, Mathilde
    Pirard, Jean-Paul
    TOPICS IN CATALYSIS, 2009, 52 (13-20) : 2117 - 2122
  • [20] Numerical optimization of proton exchange membrane fuel cell cathodes
    Secanell, M.
    Carnes, B.
    Suleman, A.
    Djilali, N.
    ELECTROCHIMICA ACTA, 2007, 52 (07) : 2668 - 2682