VARIATIONAL CHARACTERIZATION AND RAYLEIGH QUOTIENT ITERATION OF 2D EIGENVALUE PROBLEM WITH APPLICATIONS

被引:0
|
作者
Lu, Tianyi [1 ,2 ]
Su, Yangfeng [2 ]
Bai, Zhaojun [3 ,4 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
[4] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
eigenvalue problem; eigenvalue optimization; variational characterization; Rayleigh quotient iteration; PSEUDOSPECTRAL ABSCISSA; OPTIMIZATION; MATRIX; ALGORITHM; DISTANCE; INVERSE; DERIVATIVES; STABILITY;
D O I
10.1137/22M1472589
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A two dimensional eigenvalue problem (2DEVP) of a Hermitian matrix pair (A, C) is introduced in this paper. The 2DEVP can be regarded as a linear algebra formulation of the well-known eigenvalue optimization problem of the parameter matrix A - \mu C. We first present fundamental properties of the 2DEVP, such as the existence and variational characterizations of 2Deigenvalues, and then devise a Rayleigh quotient iteration (RQI)-like algorithm, 2DRQI in short, for computing a 2D-eigentriplet of the 2DEVP. The efficacy of the 2DRQI is demonstrated by large scale eigenvalue optimization problems arising from the minmax of Rayleigh quotients and the distance to instability of a stable matrix.
引用
收藏
页码:1455 / 1486
页数:32
相关论文
共 50 条
  • [21] Mixed Spectral Element Method for 2D Maxwell's Eigenvalue Problem
    Liu, Na
    Tobon, Luis
    Tang, Yifa
    Liu, Qing Huo
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 17 (02) : 458 - 486
  • [22] LINEAR VARIATIONAL EIGENVALUE INEQUALITIES WITH APPLICATIONS TO THE BUCKLING PROBLEM OF THE UNILATERALLY SUPPORTED BEAM
    HUY, HD
    WERNER, B
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1985, 8 (3-4) : 357 - 382
  • [23] The Eigenvalue Problem for the 2D Laplacian in ℋ-Matrix Arithmetic and Application to the Heat and Wave Equation
    M. Lintner
    Computing, 2004, 72 : 293 - 323
  • [24] The finite element approximation of a 2D maxwell eigenvalue problem in a domain with curved boundaries
    Hamelinck, Wouter
    Van Keer, Roger
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 252 - +
  • [25] 2D Material Bubbles: Fabrication, Characterization, and Applications
    Sanchez, Daniel A.
    Dai, Zhaohe
    Lu, Nanshu
    TRENDS IN CHEMISTRY, 2021, 3 (03): : 204 - 217
  • [26] Piezoelectricity of 2D nanomaterials: characterization, properties, and applications
    Zhang, Jin
    Meguid, S. A.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2017, 32 (04)
  • [27] Global regularity for the 2D micropolar Rayleigh-Benard problem with partial dissipation
    Shang, Haifeng
    Guo, Mengyu
    APPLIED MATHEMATICS LETTERS, 2022, 128
  • [28] On the well-posedness for the 2D micropolar Rayleigh–Bénard convection problem
    Fuyi Xu
    Liening Qiao
    Mingxue Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [29] On the well-posedness for the 2D micropolar Rayleigh-Benard convection problem
    Xu, Fuyi
    Qiao, Liening
    Zhang, Mingxue
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):
  • [30] 2D AND 3D COMPUTATIONS OF EIGENVALUE PROBLEMS
    SCHMITT, D
    WEILAND, T
    IEEE TRANSACTIONS ON MAGNETICS, 1992, 28 (02) : 1793 - 1796