Estimating high spatio-temporal resolution XCO2 2 using spatial features deep fusion model

被引:0
|
作者
Cui, Liu [1 ]
Yang, Hui [1 ,2 ]
Qiao, Yina [1 ]
Huang, Xinfeng [1 ]
Feng, Gefei [3 ,4 ]
Lv, Qingzhou [1 ]
Fan, Huaiwei [1 ]
机构
[1] China Univ Min & Technol, Sch Resources & Geosci, Xuzhou 221116, Peoples R China
[2] China Univ Min & Technol, Key Lab Coalbed Methane Resources & Reservoir Form, Minist Educ, Xuzhou 221116, Peoples R China
[3] Jiangsu Normal Univ, Sch Linguist Sci & Arts, Xuzhou 221009, Peoples R China
[4] Collaborat Innovat Ctr Language Abil, Key Lab Language & Cognit Neurosci Jiangsu Prov, Xuzhou 221009, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep fusion; SpatialFusionNet; CNN; OCO-2; Estimated XCO2; CO2; MODIS; OCO-2; GOSAT;
D O I
10.1016/j.atmosres.2024.107542
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The high temporal-spatial resolution estimation of XCO2 2 data is foundational for precision quantification of carbon dioxide sources and sinks at a regional scale. This study proposed an advanced XCO2 2 data estimation method, using spatial features deep fusion. Leveraging convolutional neural network (CNN) principles, SpatialFusionNet-a module was designed to amalgamate geographical features within a defined spatial range. This module captures and integrates the spatial characteristics of meteorological and surface environmental factors, enhancing its application to the XCO2 2 estimation model. Building upon machine learning methods including Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), and Deep Neural Network (DNN), combined with the SpatialFusionNet module, the spatial features deep fusion models were constructed utilizing relationships among OCO-2 satellite XCO2 2 trajectory monitoring data in China, Copernicus Atmospheric Monitoring Service (CAMS) XCO2 2 reanalysis data, and meteorological factors, surface vegetation, and meteorological factors. Model performance improvements were significant, with SVM, DNN, and XGBoost showing respective RMSE reductions of 1.297 ppm, 0.480 ppm, and 0.200 ppm in ten-fold cross-validation based on OCO2 trajectory samples. In data validation with TCCON Hefei station, the correlation between inversion data and ground-based data reached 0.85, affirming the method's high accuracy. Employing the spatial feature extraction module combined with DNN, the 2015 XCO2 2 annual spatial distribution of China, analyzing temporal-spatial distribution characteristics in China was generated. The DNN model, combining the SpatialFusionNet module, significantly contributes to the estimation of high temporal-spatial resolution XCO2 2 datasets, facilitating fine- scale quantification of regional carbon cycling.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Hemicraniectomy: A New Model for Human Electrophysiology with High Spatio-temporal Resolution
    Voytek, Bradley
    Secundo, Lavi
    Bidet-Caulet, Aurelie
    Scabini, Donatella
    Stiver, Shirley I.
    Gean, Alisa D.
    Manley, Geoffrey T.
    Knight, Robert T.
    JOURNAL OF COGNITIVE NEUROSCIENCE, 2010, 22 (11) : 2491 - 2502
  • [32] Spatio-temporal fusion for daily Sentinel-2 images
    Wang, Qunming
    Atkinson, Peter M.
    REMOTE SENSING OF ENVIRONMENT, 2018, 204 : 31 - 42
  • [33] A Novel Fusion Method for Generating Surface Soil Moisture Data With High Accuracy, High Spatial Resolution, and High Spatio-Temporal Continuity
    Huang, Shuzhe
    Zhang, Xiang
    Chen, Nengcheng
    Ma, Hongliang
    Fu, Peng
    Dong, Jianzhi
    Gu, Xihui
    Nam, Won-Ho
    Xu, Lei
    Rab, Gerhard
    Niyogi, Dev
    WATER RESOURCES RESEARCH, 2022, 58 (05)
  • [34] IMPROVEMENTS OF HIGH SPATIO-TEMPORAL RESOLUTION INSTRUMENTS USED FOR LASER-FUSION STUDIES
    LAUNSPACH, J
    BILLON, D
    CAVAILLER, C
    DAVID, J
    LEBRETON, JP
    ROSTAING, M
    SAUNEUF, R
    VERRECCHIA, R
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1985, 491 : 685 - 692
  • [35] Precipitation nowcasting leveraging spatial correlation feature extraction and deep spatio-temporal fusion network
    Yu, Wenbin
    Li, Yangsong
    Fan, Cheng
    Fu, Daoyong
    Zhang, Chengjun
    Chen, Yadang
    Qian, Ming
    Liu, Jie
    Liu, Gaoping
    EARTH SCIENCE INFORMATICS, 2024, 17 (05) : 4739 - 4755
  • [36] HIGH SPATIAL RESOLUTION OF SOIL MOISTURE USING BAGGED REGRESSION TREES AND SPATIO-TEMPORAL CORRELATIONS FROM SMAP L2 PRODUCTS
    Hernandez-Sanchez, Juan Carlos
    Monsivais-Huertero, Alejandro
    Judge, Jasmeet
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3198 - 3201
  • [37] Radar Echo Extrapolation Model Based on Deep Spatio-Temporal Fusion Neural Network
    Fang W.
    Pang L.
    Yi W.-N.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (09): : 2526 - 2538
  • [38] Estimating the spatio-temporal risk of disease epidemics using a bioclimatic niche model
    Pinkard, E. A.
    Kriticos, D. J.
    Wardlaw, T. J.
    Carnegie, A. J.
    Leriche, Agathe
    ECOLOGICAL MODELLING, 2010, 221 (23) : 2828 - 2838
  • [39] High Resolution Image Classification Based on Spatio-Temporal Context Model of CRF
    Zhang, Aiying
    Tang, Ping
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6979 - 6982
  • [40] Spatial and temporal variation of surface xCO2 providing net biological productivities in the western North Pacific in June
    Sugiura, K
    Tsunogai, S
    JOURNAL OF OCEANOGRAPHY, 2005, 61 (03) : 435 - 445