Progress and Challenges of Ni-Rich Layered Cathodes for All-Solid-State Lithium Batteries

被引:0
|
作者
Zheng, Haonan [1 ,2 ]
Peng, Shuang [1 ,2 ]
Liang, Suzhe [3 ]
Yang, Weiyou [2 ]
Chen, Chaoyi [1 ]
Wang, Changhong [3 ]
Yu, Ruizhi [2 ]
机构
[1] Guizhou Univ, Sch Mat & Met, Guiyang 550025, Guizhou, Peoples R China
[2] Ningbo Univ Technol, Inst Micronano Mat & Devices, Ningbo 315211, Zhejiang, Peoples R China
[3] Eastern Inst Technol, Eastern Inst Adv Study, Ningbo 315201, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
all-solid-state lithium batteries; cost; energy density; mechanism; Ni-rich layered cathodes; TRANSITION-METAL OXIDE; LI-ION; INTERFACIAL MODIFICATION; STORAGE CHARACTERISTICS; SUPERIONIC CONDUCTOR; ELECTRODE MATERIALS; ENERGY-DENSITY; NCA CATHODE; PERFORMANCE; SURFACE;
D O I
10.1002/adfm.202418274
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ni-rich layered oxides are recognized as one of the most promising candidates for cathodes in all-solid-state lithium batteries (ASSLBs) due to their intrinsic merits, such as high average voltage and specific capacity. However, their application is profoundly hindered by sluggish interfacial lithium-ion (Li+)/electron transfer kinetics, which is primarily caused by surface lithium residues, structural transformation, Li/Ni mixing, H2/H3 phase transition, and microcracks. Furthermore, electro-chemo-mechanical failures at the cathode/solid-state electrolyte (SSE) interface, including interfacial side reactions, space-charge layer (SCL) formation, and interfacial physical disconnection, accelerate capacity fading. This work provides a systematic overview of these challenges and fundamental insights into utilizing Ni-rich layered cathodes in ASSLBs. Additionally, several key parameters, such as cost, energy density, pressure, and environmental temperature, are evaluated to meet the specific requirements of ASSLBs for commercial applications. Moreover, the representative modification strategies and future research directions for exploring advanced Ni-rich layered cathode-based ASSLBs are outlined. This review aims to provide a comprehensive understanding and essential insights to expedite the application of Ni-rich layered cathodes in ASSLBs.
引用
收藏
页数:38
相关论文
共 50 条
  • [31] Ni-Rich Layered Oxide Cathodes/Sulfide Electrolyte Interface in Solid-State Lithium Battery
    Feng, Yiman
    Wang, Zhixing
    Deng, Duo
    Yan, Guochun
    Guo, Huajun
    Li, Xinhai
    Peng, Wenjie
    Duan, Hui
    Wang, Jiexi
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (29) : 37363 - 37378
  • [32] A Perspective on the Requirements of Ni-rich Cathode Surface Modifications for Application in Lithium-ion Batteries and All-Solid-State Lithium-ion Batteries
    Choi, Jae Hong
    Embleton, Tom James
    Ko, Kyungmok
    Jang, Haeseong
    Son, Yoonkook
    Park, Joohyuk
    Lee, Songyi
    Oh, Pilgun
    CHEMELECTROCHEM, 2024, 11 (05)
  • [33] Manipulating Charge-Transfer Kinetics of Lithium-Rich Layered Oxide Cathodes in Halide All-Solid-State Batteries
    Yu, Ruizhi
    Wang, Changhong
    Duan, Hui
    Jiang, Ming
    Zhang, Anbang
    Fraser, Adam
    Zuo, Jiaxuan
    Wu, Yanlong
    Sun, Yipeng
    Zhao, Yang
    Liang, Jianwen
    Fu, Jiamin
    Deng, Sixu
    Ren, Zhimin
    Li, Guohua
    Huang, Huan
    Li, Ruying
    Chen, Ning
    Wang, Jiantao
    Li, Xifei
    Singh, Chandra Veer
    Sun, Xueliang
    ADVANCED MATERIALS, 2023, 35 (05)
  • [34] Argyrodite Solid Electrolyte-Integrated Ni-Rich Oxide Cathode with Enhanced Interfacial Compatibility for All-Solid-State Lithium Batteries
    Xia, Yang
    Li, Jiaojiao
    Xiao, Zhen
    Zhou, Xiaozheng
    Zhang, Jun
    Huang, Hui
    Gan, Yongping
    He, Xinping
    Zhang, Wenkui
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (29) : 33361 - 33369
  • [35] Current challenges and progress in anode/electrolyte interfaces of all-solid-state lithium batteries
    Ma, Liang
    Dong, Yu
    Li, Ning
    Yan, Wengang
    Ma, Siyuan
    Fang, Youyou
    Li, Yongjian
    Xu, Lifeng
    Liu, Cai
    Chen, Sheng
    Feng, Renchao
    Chen, Lai
    Cao, Duanyun
    Lu, Yun
    Huang, Qing
    Su, Yuefeng
    Wu, Feng
    ETRANSPORTATION, 2024, 20
  • [36] Surface to bulk design empowering Ni-rich layered oxide cathode in sulfide-based All-Solid-State batteries
    Li, Yuanyuan
    Li, Jianwei
    Zeng, Zhen
    Xu, Xiao
    Cheng, Jun
    Zhang, Hongqiang
    Li, Jing
    Rao, Yiwei
    Deng, Ying
    Ci, Lijie
    Li, Deping
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [37] Deciphering the Interfacial Li-Ion Migration Kinetics of Ni-Rich Cathodes in Sulfide-Based All-Solid-State Batteries
    Gao, Chenxi
    Xu, Xiao
    Bai, Tiansheng
    Cheng, Jun
    Zeng, Zhen
    Zhang, Hongqiang
    Ci, Naixuan
    Zhai, Wei
    Ma, Qing
    Lu, Jingyu
    Ma, Jun
    Ci, Lijie
    Li, Deping
    ACS APPLIED MATERIALS & INTERFACES, 2024, 17 (01) : 1179 - 1190
  • [38] Impact of high-temperature storage on capacity fading of Ni-rich cathodes in sulfide-based all-solid-state batteries
    Lee, Hyunbeom
    Seok, Jangwhan
    Chung, Chanyou
    Park, Sangbin
    Kim, Jaeyoung
    Yoon, Won-Sub
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [39] All-Solid-State Lithium Batteries with Sulfide Electrolytes and Oxide Cathodes
    Wu, Jinghua
    Shen, Lin
    Zhang, Zhihua
    Liu, Gaozhan
    Wang, Zhiyan
    Zhou, Dong
    Wan, Hongli
    Xu, Xiaoxiong
    Yao, Xiayin
    ELECTROCHEMICAL ENERGY REVIEWS, 2021, 4 (01) : 101 - 135
  • [40] All-Solid-State Lithium Batteries with Sulfide Electrolytes and Oxide Cathodes
    Jinghua Wu
    Lin Shen
    Zhihua Zhang
    Gaozhan Liu
    Zhiyan Wang
    Dong Zhou
    Hongli Wan
    Xiaoxiong Xu
    Xiayin Yao
    Electrochemical Energy Reviews, 2021, 4 : 101 - 135