Compact thermal management for high-density lithium-ion batteries: Liquid cooling solutions

被引:0
|
作者
Yuan, Xiaolu [1 ]
Zheng, Rentong [1 ]
Yang, Jiaming [1 ]
Kong, Benben [2 ]
Shi, Hong [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Coll Energy & Power, 2 Mengxi, Zhenjiang 212003, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Key Lab Aircraft Environm Control & Life Support, MIIT, 29 Yudao St, Nanjing 210016, Peoples R China
关键词
Thermal management; Lithium-ion batteries; CFD; Hybrid cooling system; Optimization design;
D O I
10.1016/j.est.2025.115523
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Efficient thermal dissipation technology is crucial for compact energy storage battery packs with high heat flux density, representing a major bottleneck in technological advancement. This study proposes a thermal management strategy: a compact liquid-cooling system designed to optimize the thermal efficiency of lithium-ion battery (LIB) modules. Utilizing computational fluid dynamics (CFD) simulation technology, this study focuses on analyzing the impact of the height of the liquid cooling tube (Delta h), the angle of contact between the tubes and the batteries (B), the velocity of the cooling liquid at the inlet (vw), and the temperature of the cooling water (T) on the thermal performance of the battery pack. To simplify the analysis process and achieve rapid optimization, this study integrates orthogonal experimental design, genetic aggregation, and the rank sum ratio (RSR) method, avoiding extensive CFD predictive calculations and quickly obtaining the optimal structural solution. The results show that when the height of the cooling tube h increases from 0 mm to 6 mm, the maximum temperature of the battery pack (Tmax) decreases from 24.0 degrees C to 23.7 degrees C, while the system mass (m) correspondingly increases from 0.106 kg to 0.125 kg, and the energy consumption (W) increases from 52,767 J to 53,140 J. When B increases from 30 degrees to 90 degrees, Tmax decreases from 25.7 degrees C to 23.7 degrees C, m increases from 0.082 kg to 0.118 kg, and W increases from 52,533 J to 53,032 J. When vw increases from 0.2 m/s to 1 m/s, Tmax decreases from 27.5 degrees C to 23.6 degrees C, and W correspondingly increases from 52,565 J to 53,163 J. When T increases from 15 degrees C to 25 degrees C, Tmax increases from 18.9 degrees C to 28.7 degrees C, while W decreases from 53,453 J to 52,384 J. By comprehensively optimizing these parameters, the optimal system configuration was determined: Delta h = 0 mm, B = 60 degrees, vw = 0.93 m/s, T = 22.5 degrees C. Compared to the initial solution, W of the optimal solution was reduced by 350 J, and m was reduced by 0.013 kg. The results of this study confirm that the proposed thermal management system significantly improves the thermal performance of LIB modules, providing a compact, multi-objective solution for high-power applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Thermal management for the prismatic lithium-ion battery pack by immersion cooling with Fluorinated liquid
    Li, Yang
    Bai, Minli
    Zhou, Zhifu
    Wu, Wei-Tao
    Wei, Lei
    Hu, Chengzhi
    Liu, Xinyu
    Gao, Shuai
    Li, Yubai
    Song, Yongchen
    APPLIED THERMAL ENGINEERING, 2024, 257
  • [32] Liquid-immersed thermal management to cylindrical lithium-ion batteries for their pack applications
    Li, Zhe
    Zhang, Hua
    Sheng, Lei
    Nong, Kaifei
    Wang, Kailong
    Wang, Zilong
    Zhang, Zhendong
    Seong, Myeongsu
    JOURNAL OF ENERGY STORAGE, 2024, 85
  • [33] Liquid immersion thermal management of lithium-ion batteries for electric vehicles: An experimental study
    Williams, N. P.
    Trimble, D.
    O'Shaughnessy, S. M.
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [34] Modeling and Analysis of Heat Dissipation for Liquid Cooling Lithium-Ion Batteries
    Duan, Jiabin
    Zhao, Jiapei
    Li, Xinke
    Panchal, Satyam
    Yuan, Jinliang
    Fraser, Roydon
    Fowler, Michael
    ENERGIES, 2021, 14 (14)
  • [35] Analysing the performance of liquid cooling designs in cylindrical lithium-ion batteries
    Yates, Matthew
    Akrami, Mohammad
    Javadi, Akbar A.
    JOURNAL OF ENERGY STORAGE, 2021, 33
  • [36] A structural difference design for thermal management to improve the temperature uniformity of high energy density lithium-ion batteries
    Chen, Zhaoliang
    Li, Chao
    Pan, Minqiang
    APPLIED THERMAL ENGINEERING, 2023, 221
  • [37] Electrodeposition of high-density lithium vanadate nanowires for lithium-ion battery
    Hua, Kang
    Li, Xiujuan
    Fang, Dong
    Yi, Jianhong
    Bao, Rui
    Luo, Zhiping
    APPLIED SURFACE SCIENCE, 2018, 447 : 610 - 616
  • [38] High-density nanotwinned copper foils electrodeposited under low temperatures for lithium-ion batteries
    Han, Wenyi
    Shen, Chunjian
    Zhu, Di
    ENERGY, 2025, 320
  • [39] Liquid electrolytes for lithium and lithium-ion batteries
    Blomgren, GE
    JOURNAL OF POWER SOURCES, 2003, 119 : 326 - 329
  • [40] Liquid electrolytes for lithium and lithium-ion batteries
    Swiderska-Mocek, Agnieszka
    Rudnicka, Ewelina
    PRZEMYSL CHEMICZNY, 2014, 93 (04): : 433 - 438