Mobility-assisted Federated Learning for Vehicular Edge Computing

被引:0
|
作者
Bian, Jieming [1 ]
Xu, Jie [1 ]
机构
[1] Univ Miami, Dept ECE, Coral Gables, FL 33146 USA
关键词
D O I
10.1109/IEEECONF59524.2023.10477077
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the unique challenges of machine learning in smart public transportation systems, where data processing and model training are decentralized across smart buses. Traditional federated learning (FL) algorithms, mostly synchronous, struggle in this environment due to asynchronous communication patterns and limited Roadside Units (RSUs) coverage. To overcome these challenges, we introduce MARLIN (Mobility Assisted fedeRated LearnINg), an innovative asynchronous FL approach that utilizes the predictable movement of buses and the potential for Vehicle-to-Vehicle (V2V) communication. MARLIN employs buses as relays for server communication, enhancing interaction frequency and expediting FL convergence. Our experiments on the FMNIST dataset demonstrate that MARLIN significantly outperforms the existing asynchronous FL method [1], offering a viable solution for efficient data processing in intelligent public transportation systems.
引用
收藏
页码:289 / 293
页数:5
相关论文
共 50 条
  • [21] Blockchain-Enabled Federated Learning for Enhanced Collaborative Intrusion Detection in Vehicular Edge Computing
    El Houda, Zakaria Abou
    Moudoud, Hajar
    Brik, Bouziane
    Khoukhi, Lyes
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7661 - 7672
  • [22] Federated Deep Reinforcement Learning Based Task Offloading with Power Control in Vehicular Edge Computing
    Moon, Sungwon
    Lim, Yujin
    SENSORS, 2022, 22 (24)
  • [23] Prototyping federated learning on edge computing systems
    Jianlei Yang
    Yixiao Duan
    Tong Qiao
    Huanyu Zhou
    Jingyuan Wang
    Weisheng Zhao
    Frontiers of Computer Science, 2020, 14
  • [24] Federated Deep Learning for Heterogeneous Edge Computing
    Ahmed, Khandaker Mamun
    Imteaj, Ahmed
    Amini, M. Hadi
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1146 - 1152
  • [25] Prototyping federated learning on edge computing systems
    Yang, Jianlei
    Duan, Yixiao
    Qiao, Tong
    Zhou, Huanyu
    Wang, Jingyuan
    Zhao, Weisheng
    FRONTIERS OF COMPUTER SCIENCE, 2020, 14 (06)
  • [26] Federated Learning Protocols for IoT Edge Computing
    Foukalas, Fotis
    Tziouvaras, Athanasios
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (15) : 13570 - 13581
  • [27] Bias Mitigation in Federated Learning for Edge Computing
    Djebrouni, Yasmine
    Benarba, Nawel
    Touat, Ousmane
    De Rosa, Pasquale
    Bouchenak, Sara
    Bonifati, Angela
    Felber, Pascal
    Marangozova, Vania
    Schiavoni, Valerio
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2023, 7 (04):
  • [28] Federated Learning in Edge Computing: A Systematic Survey
    Abreha, Haftay Gebreslasie
    Hayajneh, Mohammad
    Serhani, Mohamed Adel
    SENSORS, 2022, 22 (02)
  • [29] Federated Learning Game in IoT Edge Computing
    Durand, Stephane
    Khawam, Kinda
    Quadri, Dominique
    Lahoud, Samer
    Martin, Steven
    IEEE ACCESS, 2024, 12 : 93060 - 93074
  • [30] Anti-Byzantine Attacks Enabled Vehicle Selection for Asynchronous Federated Learning in Vehicular Edge Computing
    Zhang Cui
    Xu Xiao
    Wu Qiong
    Fan Pingyi
    Fan Qiang
    Zhu Huiling
    Wang Jiangzhou
    ChinaCommunications, 2024, 21 (08) : 1 - 17