Remarks on the geometric structure of port-Hamiltonian systems

被引:0
|
作者
Kirchhoff, Jonas [1 ]
Maschke, Bernhard [2 ]
机构
[1] Tech Univ Ilmenau, Inst Math, D-98693 Ilmenau, Germany
[2] Univ Lyon 1, LAGEPP, F-69622 Villeurbanne, France
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 06期
关键词
Dirac structures; port-Hamiltonian systems; nonlinear systems; geometrical methods;
D O I
10.1016/j.ifacol.2024.08.293
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the geometric structure of port-Hamiltonian systems. Starting with the intuitive understanding that port-Hamiltonian systems are "in between" certain closed Hamiltonian systems, the geometric structure of port-Hamiltonian systems must be "in between" the geometric structures of the latter systems. These are Courant algebroids; and hence the geometric structures should be related by Courant algebroid morphisms. Using this idea, we propose a definition of an intrinsic geometric structure and show that it is unique, if it exists. Copyright (C) 2024 The Authors.
引用
收藏
页码:274 / 279
页数:6
相关论文
共 50 条
  • [41] Bounded stabilisation of stochastic port-Hamiltonian systems
    Satoh, Satoshi
    Saeki, Masami
    INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (08) : 1573 - 1582
  • [42] Port-Hamiltonian systems with energy and power ports
    Krhac, Kaja
    Maschke, Bernhard
    van der Schaft, Arjan
    IFAC PAPERSONLINE, 2024, 58 (06): : 280 - 285
  • [43] On Dirac structure of infinite-dimensional stochastic port-Hamiltonian systems
    Lamoline, Francois
    Hastir, Anthony
    EUROPEAN JOURNAL OF CONTROL, 2024, 75
  • [44] Port-Hamiltonian Systems Theory: An Introductory Overview
    van der Schaft, Arjan
    Jeltsema, Dimitri
    FOUNDATIONS AND TRENDS IN SYSTEMS AND CONTROL, 2014, 1 (2-3): : I - +
  • [45] Discrete port-Hamiltonian systems: mixed interconnections
    Talasila, Viswanath
    Clemente-Gallardo, J.
    van der Schaft, A. J.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 5656 - 5661
  • [46] Learning port-Hamiltonian Systems-Algorithms
    Salnikov, V.
    Falaize, A.
    Lozienko, D.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (01) : 126 - 134
  • [47] Optimal control of thermodynamic port-Hamiltonian Systems
    Maschke, Bernhard
    Philipp, Friedrich
    Schaller, Manuel
    Worthmann, Karl
    Faulwasser, Timm
    IFAC PAPERSONLINE, 2022, 55 (30): : 55 - 60
  • [48] Robust integral action of port-Hamiltonian systems
    Ferguson, Joel
    Donaire, Alejandro
    Ortega, Romeo
    Middleton, Richard H.
    IFAC PAPERSONLINE, 2018, 51 (03): : 181 - 186
  • [49] Exergetic port-Hamiltonian systems: modelling basics
    Lohmayer, Markus
    Kotyczka, Paul
    Leyendecker, Sigrid
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2021, 27 (01) : 489 - 521
  • [50] A Simple Robust Controller for Port-Hamiltonian Systems
    Paunonen, Lassi
    Le Gorrec, Yann
    Ramirez, Hector
    IFAC PAPERSONLINE, 2018, 51 (03): : 92 - 96