Opposing Mean Error Compensation for Accuracy Enhancement in Analog Compute-in-Memory With Resistive Switching Devices

被引:0
|
作者
Huang, Wei-Hsing [1 ]
Lee, Woocheol [2 ]
Kim, Joong Sik [2 ]
Koo, Won-Tae [2 ]
Suh, Dong Ik [2 ]
Lee, Seho [2 ]
Yi, Jaeyun [2 ]
Cha, Seon Yong [2 ]
Yu, Shimeng [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] SK Hynix Inc, Res & Dev Div, Icheon 17336, Gyeonggi Do, South Korea
关键词
Accuracy; Artificial intelligence; Switches; Standards; Training; Gaussian distribution; Error compensation; In-memory computing; Data models; Computational modeling; Analog-compute-in-memory (ACiM); resistive memory; variations compensation; RRAM;
D O I
10.1109/TED.2024.3516731
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Analog compute-in-memory (ACiM) systems show promise for energy-efficient AI inference, but their performance is hindered by variations in conductance, resulting in reduced accuracy. This work investigates the impact of mean error, which represents the discrepancy between actual conductance values and their intended targets from the measured distribution of 256 kb analog resistive switching cells, on the accuracy of neural network models. We propose opposing mean error compensation (OMEC), a technique that mitigates these errors without necessitating alterations to the memory device. Through simulations, we illustrate that adjusting weight targets can lead to a remarkable improvement in the inference accuracy, elevating it from a mere 12.59% to an impressive 90.65%, without modifying the memory device.
引用
收藏
页码:934 / 938
页数:5
相关论文
共 15 条
  • [1] Accuracy and Resiliency of Analog Compute-in-Memory Inference Engines
    Wan, Zhe
    Wang, Tianyi
    Zhou, Yiming
    Iyer, Subramanian S.
    Roychowdhury, Vwani P.
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2022, 18 (02)
  • [2] A CMOS-integrated compute-in-memory macro based on resistive random-access memory for AI edge devices
    Xue, Cheng-Xin
    Chiu, Yen-Cheng
    Liu, Ta-Wei
    Huang, Tsung-Yuan
    Liu, Je-Syu
    Chang, Ting-Wei
    Kao, Hui-Yao
    Wang, Jing-Hong
    Wei, Shih-Ying
    Lee, Chun-Ying
    Huang, Sheng-Po
    Hung, Je-Min
    Teng, Shih-Hsih
    Wei, Wei-Chen
    Chen, Yi-Ren
    Hsu, Tzu-Hsiang
    Chen, Yen-Kai
    Lo, Yun-Chen
    Wen, Tai-Hsing
    Lo, Chung-Chuan
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Ho, Mon-Shu
    Su, Chin-Yi
    Chou, Chung-Cheng
    Chih, Yu-Der
    Chang, Meng-Fan
    NATURE ELECTRONICS, 2021, 4 (01) : 81 - 90
  • [3] A CMOS-integrated compute-in-memory macro based on resistive random-access memory for AI edge devices
    Cheng-Xin Xue
    Yen-Cheng Chiu
    Ta-Wei Liu
    Tsung-Yuan Huang
    Je-Syu Liu
    Ting-Wei Chang
    Hui-Yao Kao
    Jing-Hong Wang
    Shih-Ying Wei
    Chun-Ying Lee
    Sheng-Po Huang
    Je-Min Hung
    Shih-Hsih Teng
    Wei-Chen Wei
    Yi-Ren Chen
    Tzu-Hsiang Hsu
    Yen-Kai Chen
    Yun-Chen Lo
    Tai-Hsing Wen
    Chung-Chuan Lo
    Ren-Shuo Liu
    Chih-Cheng Hsieh
    Kea-Tiong Tang
    Mon-Shu Ho
    Chin-Yi Su
    Chung-Cheng Chou
    Yu-Der Chih
    Meng-Fan Chang
    Nature Electronics, 2021, 4 : 81 - 90
  • [4] PCM-Based Analog Compute-In-Memory: Impact of Device Non-Idealities on Inference Accuracy
    Sun, X.
    Khwa, W. S.
    Chen, Y. S.
    Lee, C. H.
    Lee, H. Y.
    Yu, S. M.
    Naous, R.
    Wu, J. Y.
    Chen, T. C.
    Bao, X.
    Chang, M. F.
    Diaz, C. H.
    Wong, H-S P.
    Akarvardar, K.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (11) : 5585 - 5591
  • [5] Impact of Phase-Change Memory Drift on Energy Efficiency and Accuracy of Analog Compute-in-Memory Deep Learning Inference (Invited)
    Frank, Martin M.
    Li, Ning
    Rasch, Malte J.
    Jain, Shubham
    Chen, Ching-Tzu
    Muralidhar, Ramachandran
    Han, Jin-Ping
    Narayanan, Vijay
    Philip, Timothy M.
    Brew, Kevin
    Simon, Andrew
    Saraf, Iqbal
    Saulnier, Nicole
    Boybat, Irem
    Wozniak, Stanislaw
    Sebastian, Abu
    Narayanan, Pritish
    Mackin, Charles
    Chen, An
    Tsai, Hsinyu
    Burr, Geoffrey W.
    2023 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, IRPS, 2023,
  • [6] Capacitive and Inductive Characteristics of Volatile Perovskite Resistive Switching Devices with Analog Memory
    Gonzales, Cedric
    Bou, Agustin
    Guerrero, Antonio
    Bisquert, Juan
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (25): : 6496 - 6503
  • [7] Introduction to Analog Testing of Resistive Random Access Memory (RRAM) Devices Towards Scalable Analog Compute Technology for Deep Learning
    Pujari, Ruturaj
    Gasasira, Arthur
    Kim, Youngseok
    Katragadda, Veenadhar
    Seo, Soon-Cheon
    Kong, Dexin
    Liu, Xuefeng
    Teehan, Sean
    Saulnier, Nicole
    Ahsan, Ishtiaq
    Narayanan, Vijay
    Ando, Takashi
    2021 32ND ANNUAL SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE (ASMC), 2021,
  • [8] Resistive Memory Process Optimization for High Resistance Switching Toward Scalable Analog Compute Technology for Deep Learning
    Kim, Y.
    Seo, S-C
    Consiglio, S.
    Jamison, P.
    Higuchi, H.
    Rasch, M.
    Wu, E. Y.
    Kong, D.
    Saraf, I
    Catano, C.
    Muralidhar, R.
    Nguyen, S.
    DeVries, S.
    Van der Straten, O.
    Sankarapandian, M.
    Pujari, R. N.
    Gasasira, A.
    Mcdermott, S. M.
    Miyazoe, H.
    Koty, D.
    Yang, Q.
    Yan, H.
    Clark, R.
    Tapily, K.
    Engelmann, S.
    Robison, R. R.
    Wajda, C.
    Mosden, A.
    Tsunomura, T.
    Soave, R.
    Saulnier, N.
    Haensch, W.
    Leusink, G.
    Biolsi, P.
    Narayanan, V
    Ando, T.
    IEEE ELECTRON DEVICE LETTERS, 2021, 42 (05) : 759 - 762
  • [9] A four-megabit compute-in-memory macro with eight-bit precision based on CMOS and resistive random-access memory for AI edge devices
    Je-Min Hung
    Cheng-Xin Xue
    Hui-Yao Kao
    Yen-Hsiang Huang
    Fu-Chun Chang
    Sheng-Po Huang
    Ta-Wei Liu
    Chuan-Jia Jhang
    Chin-I Su
    Win-San Khwa
    Chung-Chuan Lo
    Ren-Shuo Liu
    Chih-Cheng Hsieh
    Kea-Tiong Tang
    Mon-Shu Ho
    Chung-Cheng Chou
    Yu-Der Chih
    Tsung-Yung Jonathan Chang
    Meng-Fan Chang
    Nature Electronics, 2021, 4 : 921 - 930
  • [10] A four-megabit compute-in-memory macro with eight-bit precision based on CMOS and resistive random-access memory for AI edge devices
    Hung, Je-Min
    Xue, Cheng-Xin
    Kao, Hui-Yao
    Huang, Yen-Hsiang
    Chang, Fu-Chun
    Huang, Sheng-Po
    Liu, Ta-Wei
    Jhang, Chuan-Jia
    Su, Chin-, I
    Khwa, Win-San
    Lo, Chung-Chuan
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Ho, Mon-Shu
    Chou, Chung-Cheng
    Chih, Yu-Der
    Chang, Tsung-Yung Jonathan
    Chang, Meng-Fan
    NATURE ELECTRONICS, 2021, 4 (12) : 921 - +