Uncertainty modeling for inductive knowledge graph embedding

被引:0
|
作者
Liu, Chao [1 ]
Kwong, Sam [3 ]
Wang, Xizhao [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[3] Lingnan Univ, Dept Comp & Decis Sci, Hong Kong 999077, Peoples R China
关键词
Distribution shift; Embedding space; Graph representation learning; Reconstruction; Inductive link prediction;
D O I
10.1016/j.neunet.2024.107103
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the process of refining Knowledge Graphs (KGs), new entities emerge, and old entities evolve, which usually updates their attribute information and neighborhood structures. This results in a distribution shift problem for entity features in the embedding space during graph representation learning. Most of existing inductive knowledge graph embedding methods focus mainly on the representation learning of new entities, neglecting the negative impact caused by distribution shift of entity features. In this paper, we use the skill of mean and variance reconstruction to develop a novel inductive knowledge graph embedding model named EDSU for processing the shift of entity feature distribution. Specifically, by assuming that the embedding feature of entity follows multivariate Gaussian distribution, the reconstruction combines the distribution characteristics of components in an entity embedding vector with neighborhood structure information of a set of entity embedding vectors, in order to alleviate the deviation of data information between intra-entity and inter-entity. Furthermore, the connection between the entity features distributions before and after the shift is established, which guides the model training process and provides an interpretation on the rationality of such handling distribution shift in view of distributional data augmentation. Extensive experiments have been conducted and the results demonstrate that our EDSU model outperforms previous state-of-the-art baseline models on inductive link prediction tasks.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] TGformer: A Graph Transformer Framework for Knowledge Graph Embedding
    Shi, Fobo
    Li, Duantengchuan
    Wang, Xiaoguang
    Li, Bing
    Wu, Xindong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (01) : 526 - 541
  • [32] Graph Embedding Based Recommendation Techniques on the Knowledge Graph
    Grad-Gyenge, Laszlo
    Kiss, Attila
    Filzmoser, Peter
    ADJUNCT PUBLICATION OF THE 25TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'17), 2017, : 354 - 359
  • [33] Knowledge graph embedding in a uniform space
    Tong, Da
    Chen, Shudong
    Ma, Rong
    Qi, Donglin
    Yu, Yong
    INTELLIGENT DATA ANALYSIS, 2024, 28 (01) : 33 - 55
  • [34] Enhance Knowledge Graph Embedding by Mixup
    Xie, Tianyang
    Ge, Yong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (02) : 569 - 580
  • [35] Knowledge graph embedding with adaptive sampling
    Ouyang D.-T.
    Ma C.
    Lei J.-P.
    Feng S.-S.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2020, 50 (02): : 685 - 691
  • [36] Exploring the Generalization of Knowledge Graph Embedding
    Zhang, Liang
    Gao, Huan
    Zheng, Xianda
    Qi, Guilin
    Liu, Jiming
    SEMANTIC TECHNOLOGY, JIST 2019: PROCEEDINGS, 2020, 12032 : 162 - 176
  • [37] Distribution Knowledge Embedding for Graph Pooling
    Chen, Kaixuan
    Song, Jie
    Liu, Shunyu
    Yu, Na
    Feng, Zunlei
    Han, Gengshi
    Song, Mingli
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (08) : 7898 - 7908
  • [38] On Training Knowledge Graph Embedding Models
    Mohamed, Sameh K.
    Munoz, Emir
    Novacek, Vit
    INFORMATION, 2021, 12 (04)
  • [39] Knowledge Graph Embedding by Normalizing Flows
    Xiao, Changyi
    He, Xiangnan
    Cao, Yixin
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4756 - 4764
  • [40] Knowledge Graph Embedding by Flexible Translation
    Feng, Jun
    Huang, Minlie
    Wang, Mingdong
    Zhou, Mantong
    Hao, Yu
    Zhu, Xiaoyan
    FIFTEENTH INTERNATIONAL CONFERENCE ON THE PRINCIPLES OF KNOWLEDGE REPRESENTATION AND REASONING, 2016, : 557 - 560