A Semi-Explicit Algorithm for Parameters Estimation in a Time-Fractional Dual-Phase-Lag Heat Conduction Model

被引:1
|
作者
Lukashchuk, Stanislav Yu. [1 ]
机构
[1] Ufa Univ Sci & Technol, Dept High Performance Comp Technol & Syst, 12 K Marx Str, Ufa 450008, Russia
来源
MODELLING | 2024年 / 5卷 / 03期
关键词
non-Fourier heat conduction model; Caputo fractional derivative; inverse problem; parameters estimation; time integral characteristic; INVERSE PROBLEM; EQUATION; IDENTIFICATION; LEQUATION;
D O I
10.3390/modelling5030041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a new semi-explicit algorithm for parameters estimation in a time-fractional generalization of a dual-phase-lag heat conduction model with Caputo fractional derivatives. It is shown that this model can be derived from a general linear constitutive relation for the heat transfer by conduction when the heat conduction relaxation kernel contains the Mittag-Leffler function. The model can be used to describe heat conduction phenomena in a material with power-law memory. The proposed algorithm of parameters estimation is based on the time integral characteristics method. The explicit representations of the thermal diffusivity and the fractional analogues of the thermal relaxation time and the thermal retardation are obtained via a Laplace transform of the temperature field and utilized in the algorithm. An implicit relation is derived for the order of fractional differentiation. In the algorithm, this relation is resolved numerically. An example illustrates the proposed technique.
引用
收藏
页码:776 / 796
页数:21
相关论文
共 50 条
  • [21] Stability in locally degenerate dual-phase-lag heat conduction
    Chen, Wen-Jie
    Han, Zhong-Jie
    APPLICABLE ANALYSIS, 2021, 100 (01) : 75 - 92
  • [22] Thermodynamical consistency of the dual-phase-lag heat conduction equation
    Kovacs, Robert
    Van, Peter
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2018, 30 (06) : 1223 - 1230
  • [23] Exponential stability in the dual-phase-lag heat conduction theory
    Quintanilla, R
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2002, 27 (03) : 217 - 227
  • [24] Thermodynamical consistency of the dual-phase-lag heat conduction equation
    Róbert Kovács
    Péter Ván
    Continuum Mechanics and Thermodynamics, 2018, 30 : 1223 - 1230
  • [25] Effect of dual-phase-lag heat conduction on ignition of a solid
    Antaki, PJ
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2000, 14 (02) : 276 - 278
  • [26] FRACTIONAL DUAL-PHASE-LAG HEAT CONDUCTION WITH PERIODIC HEATING AND PHOTO-THERMAL RESPONSE
    Somer, Aloisi
    Novatski, Andressa
    Lenzi, Marcelo K.
    da Silva, Luciano R.
    Lenzi, Ervin K.
    THERMAL SCIENCE, 2023, 27 (3B): : 2537 - 2547
  • [27] Thermoelastic component of photoacoustic response calculated by the fractional dual-phase-lag heat conduction theory
    Somer, A.
    Galovic, S.
    Popovic, M. N.
    Lenzi, E. K.
    Novatski, A.
    Djordjevic, K.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 223
  • [28] Nonequilibrium entropy production under the effect of the dual-phase-lag heat conduction model
    Al-Nimr, MA
    Naji, M
    Arbaci, VS
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2000, 122 (02): : 217 - 223
  • [29] Numerical analysis of a thermoelastic problem with dual-phase-lag heat conduction
    Bazarra, N.
    Campo, M.
    Fernandez, J. R.
    Quintanilla, R.
    APPLIED NUMERICAL MATHEMATICS, 2019, 140 : 76 - 90
  • [30] A method for predicting thermal waves in dual-phase-lag heat conduction
    Kang, Zhanxiao
    Zhu, Pingan
    Gui, Dayong
    Wang, Liqiu
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 115 : 250 - 257