Comprehensive assessment and optimization of a hybrid cogeneration system based on compressed air energy storage with high-temperature thermal energy storage

被引:1
|
作者
Cao, Ruifeng [1 ]
Li, Weiqiang [1 ]
Ni, Hexi [1 ,2 ]
Kuang, Cuixiong [1 ]
Liang, Yutong [1 ]
Fu, Ziheng [1 ]
机构
[1] Northeast Elect Power Univ, Sch Energy & Power Engn, Jilin 132012, Peoples R China
[2] Harbin Boiler Co Ltd, Harbin 150046, Peoples R China
来源
关键词
compressed air energy storage (CAES); high-temperature thermal energy storage; supercritical CO2 Brayton cycle; performance assessment; multi-objective optimization; THERMODYNAMIC ANALYSIS; MULTIOBJECTIVE OPTIMIZATION; CAES SYSTEM; CYCLE; WIND;
D O I
10.1007/s11708-024-0972-2
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Compressed air energy storage (CAES) is an effective technology for mitigating the fluctuations associated with renewable energy sources. In this work, a hybrid cogeneration energy system that integrates CAES with high-temperature thermal energy storage and a supercritical CO2 Brayton cycle is proposed for enhancing the overall system performance. This proposal emphasizes system cost-effectiveness, eco-friendliness, and adaptability. Comprehensive analyses, including thermodynamic, exergoeconomic, economic, and sensitivity evaluations, are conducted to assess the viability of the system. The findings indicate that, under design conditions, the system achieves an energy storage density, a round-trip efficiency, an exergy efficiency, a unit product cost, and a dynamic payback period of 5.49 kWh/m3, 58.39%, 61.85%, 0.1421 $/kWh, and 4.81 years, respectively. The high-temperature thermal energy storage unit, intercoolers, and aftercooler show potential for optimization due to their suboptimal exergoeconomic performance. Sensitivity evaluation indicates that the operational effectiveness of the system is highly sensitive to the maximum and minimum air storage pressures, the outlet temperature of the high-temperature thermal energy storage unit, and the isentropic efficiencies of both compressors and turbines. Ultimately, the system is optimized for maximum exergy efficiency and minimum dynamic payback period. These findings demonstrate the significant potential of this system and provide valuable insights for its design and optimization.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Optimization method for a class of integrated energy system with compressed air energy storage
    Men, Jiakai
    Qiu, Jianlong
    Chen, Xiangyong
    Wang, Zhipeng
    Yao, Xiurong
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6868 - 6872
  • [42] Thermodynamic performance and cost optimization of a novel hybrid thermal-compressed air energy storage system design
    Houssainy, Sammy
    Janbozorgi, Mohammad
    Kavehpour, Pirouz
    JOURNAL OF ENERGY STORAGE, 2018, 18 : 206 - 217
  • [43] Evaluation of the energy potential of an adiabatic compressed air energy storage system based on a novel thermal energy storage system in a post mining shaft
    Bartela, Lukasz
    Ochmann, Jakub
    Waniczek, Sebastian
    Lutynski, Marcin
    Smolnik, Grzegorz
    Rulik, Sebastian
    JOURNAL OF ENERGY STORAGE, 2022, 54
  • [44] Comprehensive assessment and performance enhancement of compressed air energy storage: thermodynamic effect of ambient temperature
    Liu, Qingshan
    Liu, Yingwen
    Liu, Hongjiang
    He, Zhilong
    Xue, Xiaodai
    RENEWABLE ENERGY, 2022, 196 : 84 - 98
  • [45] A preliminary dynamic behaviors analysis of a hybrid energy storage system based on adiabatic compressed air energy storage and flywheel energy storage system for wind power application
    Zhao, Pan
    Wang, Mingkun
    Wang, Jiangfeng
    Dai, Yiping
    ENERGY, 2015, 84 : 825 - 839
  • [46] Sensitivity analysis for the energy performance assessment of hybrid compressed air energy storage systems
    Briola, Stefano
    Di Marco, Paolo
    Gabbrielli, Roberto
    Riccardi, Juri
    APPLIED ENERGY, 2017, 206 : 1552 - 1563
  • [47] Performance analysis and optimization of gas storage device in compressed air energy storage system
    Pang, Yongchao (energystoragepang@foxmail.com), 1600, Chemical Industry Press Co., Ltd. (35):
  • [48] Off-design Performance of Compressed Air Energy Storage System With Thermal Storage
    Guo H.
    Xu Y.
    Zhang X.
    Guo C.
    Chen H.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2019, 39 (05): : 1366 - 1376
  • [49] Lithium manganese oxides as high-temperature thermal energy storage system
    Varsano, Francesca
    Alvani, Carlo
    La Barbera, Aurelio
    Masi, Andrea
    Padella, Franco
    THERMOCHIMICA ACTA, 2016, 640 : 26 - 35
  • [50] Economic, exergoeconomic analyses of a novel compressed air energy storage-based cogeneration
    Xu, Xiaoxiao
    Ziwang, Y. E.
    Qian, Qian
    JOURNAL OF ENERGY STORAGE, 2022, 51