A New Polar Representation and Identities for Split Leonardo Quaternions

被引:0
|
作者
Atasoy, Ali [1 ]
机构
[1] Kirikkale Univ, Keskin Vocat Sch, Kirikkale, Turkiye
关键词
polar representation; quaternion sequence; split Leonardo quaternion; ROTATIONS;
D O I
10.1002/mma.10830
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we define split Leonardo quaternion sequences with components involving Leonardo numbers. We give fundamental properties and identities associated with split Leonardo quaternions, such as Binet's formula, as well as identities attributed to Catalan, Cassini, and d'Ocagne. Furthermore, we introduce an innovative concept: polar representation for these split quaternions using Cayley Dickson's notation. This alternative representation provides a new perspective on the structure of split Leonardo quaternions and give a deeper understanding of their geometric interpretations and transformations.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Discrete Complex Analysis in Split Quaternions
    Guangbin Ren
    Zeping Zhu
    Complex Analysis and Operator Theory, 2018, 12 : 415 - 438
  • [42] Split-Quaternions and the Dirac Equation
    Francesco Antonuccio
    Advances in Applied Clifford Algebras, 2015, 25 : 13 - 29
  • [43] Matrices over Hyperbolic Split Quaternions
    Erdogdu, Melek
    Ozdemir, Mustafa
    FILOMAT, 2016, 30 (04) : 913 - 920
  • [44] Involutions in split semi-quaternions
    Bekar, Murat
    Yayli, Yusuf
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (12) : 4491 - 4505
  • [45] Split-Quaternions and the Dirac Equation
    Antonuccio, Francesco
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (01) : 13 - 29
  • [46] Split Pell and Pell–Lucas Quaternions
    Ümit Tokeşer
    Zafer Ünal
    Göksal Bilgici
    Advances in Applied Clifford Algebras, 2017, 27 : 1881 - 1893
  • [47] REPRESENTATION OF QUATERNIONS BY TRIGONOMETRIC SERIES
    SCHMIEDER, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (05): : T449 - T451
  • [48] Matrix Representation of Dual Quaternions
    Jafari, Mehdi
    Meral, Mucahit
    Yayli, Yusuf
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2013, 26 (04): : 535 - 542
  • [49] Discrete Complex Analysis in Split Quaternions
    Ren, Guangbin
    Zhu, Zeping
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (02) : 415 - 438
  • [50] REPRESENTATION OF ROTATIONS BY UNIT QUATERNIONS
    HARAUZ, G
    ULTRAMICROSCOPY, 1990, 33 (03) : 209 - 213