Trajectory inference from single-cell genomics data with a process time model

被引:0
|
作者
Fang, Meichen [1 ]
Gorin, Gennady [1 ,2 ,4 ]
Pachter, Lior [1 ,3 ]
机构
[1] CALTECH, Div Biol & Biol Engn, Pasadena, CA 91125 USA
[2] CALTECH, Div Chem & Chem Engn, Pasadena, CA USA
[3] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[4] Fauna Bio, Emeryville, CA USA
关键词
EXPRESSION; DYNAMICS; LINEAGE;
D O I
10.1371/journal.pcbi.1012752
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell transcriptomics experiments provide gene expression snapshots of heterogeneous cell populations across cell states. These snapshots have been used to infer trajectories and dynamic information even without intensive, time-series data by ordering cells according to gene expression similarity. However, while single-cell snapshots sometimes offer valuable insights into dynamic processes, current methods for ordering cells are limited by descriptive notions of "pseudotime" that lack intrinsic physical meaning. Instead of pseudotime, we propose inference of "process time" via a principled modeling approach to formulating trajectories and inferring latent variables corresponding to timing of cells subject to a biophysical process. Our implementation of this approach, called Chronocell, provides a biophysical formulation of trajectories built on cell state transitions. The Chronocell model is identifiable, making parameter inference meaningful. Furthermore, Chronocell can interpolate between trajectory inference, when cell states lie on a continuum, and clustering, when cells cluster into discrete states. By using a variety of datasets ranging from cluster-like to continuous, we show that Chronocell enables us to assess the suitability of datasets and reveals distinct cellular distributions along process time that are consistent with biological process times. We also compare our parameter estimates of degradation rates to those derived from metabolic labeling datasets, thereby showcasing the biophysical utility of Chronocell. Nevertheless, based on performance characterization on simulations, we find that process time inference can be challenging, highlighting the importance of dataset quality and careful model assessment.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Dynamic inference of cell developmental complex energy landscape from time series single-cell transcriptomic data
    Jiang, Qi
    Zhang, Shuo
    Wan, Lin
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (01)
  • [32] Fast intratumor heterogeneity inference from single-cell sequencing data
    Can Kızılkale
    Farid Rashidi Mehrabadi
    Erfan Sadeqi Azer
    Eva Pérez-Guijarro
    Kerrie L. Marie
    Maxwell P. Lee
    Chi-Ping Day
    Glenn Merlino
    Funda Ergün
    Aydın Buluç
    S. Cenk Sahinalp
    Salem Malikić
    Nature Computational Science, 2022, 2 : 577 - 583
  • [33] Phylogenetic inference from single-cell RNA-seq data
    Liu, Xuan
    Griffiths, Jason I.
    Bishara, Isaac
    Liu, Jiayi
    Bild, Andrea H.
    Chang, Jeffrey T.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [34] Fast intratumor heterogeneity inference from single-cell sequencing data
    Kizilkale, Can
    Mehrabadi, Farid Rashidi
    Azer, Erfan Sadeqi
    Perez-Guijarro, Eva
    Marie, Kerrie L.
    Lee, Maxwell P.
    Day, Chi-Ping
    Merlino, Glenn
    Ergun, Funda
    Sahinalp, S. Cenk
    Malikic, Salem
    Buluc, Aydin
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (09): : 577 - +
  • [35] Phylogenetic inference from single-cell RNA-seq data
    Xuan Liu
    Jason I. Griffiths
    Isaac Bishara
    Jiayi Liu
    Andrea H. Bild
    Jeffrey T. Chang
    Scientific Reports, 13
  • [36] scShaper: an ensemble method for fast and accurate linear trajectory inference from single-cell RNA-seq data
    Smolander, Johannes
    Junttila, Sini
    Venalainen, Mikko S.
    Elo, Laura L.
    BIOINFORMATICS, 2022, 38 (05) : 1328 - 1335
  • [37] TIPD: A Probability Distribution-Based Method for Trajectory Inference from Single-Cell RNA-Seq Data
    Xie, Jiang
    Yin, Yiting
    Wang, Jiao
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2021, 13 (04) : 652 - 665
  • [38] Building and analyzing metacells in single-cell genomics data
    Bilous, Mariia
    Herault, Leonard
    Gabriel, Aurelie A. G.
    Teleman, Matei
    Gfeller, David
    MOLECULAR SYSTEMS BIOLOGY, 2024, 20 (07) : 744 - 766
  • [39] TIPD: A Probability Distribution-Based Method for Trajectory Inference from Single-Cell RNA-Seq Data
    Jiang Xie
    Yiting Yin
    Jiao Wang
    Interdisciplinary Sciences: Computational Life Sciences, 2021, 13 : 652 - 665
  • [40] The Glioma Stem Cell Model in the Era of Single-Cell Genomics
    Suva, Mario L.
    Tirosh, Itay
    CANCER CELL, 2020, 37 (05) : 630 - 636