Unlocking the potential of liquid crystals as phase change materials for thermal energy storage

被引:0
|
作者
Karyappa, Rahul [1 ]
Cheng, Johnathan Lee Joo [1 ]
Ho, Charissa Lixuan [2 ]
Wang, Suxi [1 ]
Thitsartarn, Warinton [1 ]
Kong, Junhua [1 ]
Kai, Dan [1 ]
Tan, Beng Hoon [1 ]
Wang, Pei [1 ]
Qu, Zhengyao [3 ]
Loh, Xian Jun [1 ]
Xu, Jianwei [1 ,4 ,5 ]
Zhu, Qiang [1 ,2 ]
机构
[1] ASTAR, Inst Mat Res & Engn IMRE, 2 Fusionopolis Way,Innovis 08-03, Singapore 138634, Singapore
[2] Nanyang Technol Univ, Sch Chem Chem Engn & Biotechnol, Singapore 637371, Singapore
[3] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Hubei, Peoples R China
[4] ASTAR, Inst Sustainabil Chem Energy & Environm ISCE 2, 1 Pesek Rd, Singapore 627833, Singapore
[5] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
来源
ENERGY MATERIALS | 2025年 / 5卷 / 06期
基金
新加坡国家研究基金会;
关键词
Liquid crystals; liquid crystal polymers; phase change material; thermal conductivity; thermal energy storage; FIGURE-OF-MERIT; LATENT-HEAT; THERMOMECHANICAL PROPERTIES; GRAPHENE OXIDE; PALMITIC ACID; PARAFFIN WAX; CONDUCTIVITY; PERFORMANCE; CHAIN; ENHANCEMENT;
D O I
10.20517/energymater.2024.149
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This review paper examines the innovative use of liquid crystals (LCs) as phase change materials in thermal energy storage systems. With the rising demand for efficient energy storage, LCs offer unique opportunities owing to their tunable phase transitions, high latent heat, and favorable thermal conductivity. This paper covers various types of LCs, such as nematic, smectic, and cholesteric phases, and their roles in enhancing thermal energy storage. It discusses the mechanisms of LC phase transitions and their impact on energy storage efficiency. Strategies to improve the thermal conductivities of LCs and LC polymers have also been explored. One method involves embedding LC units within the molecular structure to promote orderly arrangement, facilitate heat flow, and reduce phonon scattering. Aligning polymer chains through external fields or mechanical processes significantly improves intrinsic thermal conductivity. The inclusion of thermally conductive fillers and optimization of filler matrix interactions further boost thermal performance. Challenges related to the scalability, cost-effectiveness, and long-term stability of LC-based phase change materials are addressed, along with future research directions. This review synthesizes the current knowledge and identifies gaps in the literature, providing a valuable resource for researchers and engineers to develop advanced thermal energy storage technologies, contributing to sustainable energy solutions.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Preparation of microencapsulated phase change materials (MEPCM) for thermal energy storage
    Su, Weiguang
    Darkwa, Jo
    Kokogiannakis, Georgis
    Zhou, Tongyu
    Li, Yiling
    IMPROVING RESIDENTIAL ENERGY EFFICIENCY INTERNATIONAL CONFERENCE, IREE 2017, 2017, 121 : 95 - 101
  • [32] Advances in phase change materials and nanomaterials for applications in thermal energy storage
    Kumar, Rahul
    Thakur, Amit Kumar
    Gupta, Lovi Raj
    Gehlot, Anita
    Sikarwar, Vineet Singh
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (05) : 6649 - 6677
  • [33] Encapsulated phase change materials for thermal energy storage: Experiments and simulation
    Hawlader, MNA
    Uddin, MS
    Zhu, HJ
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2002, 26 (02) : 159 - 171
  • [34] Optimization strategies of microencapsulated phase change materials for thermal energy storage
    Wang, K. W.
    Yan, Ting
    Pan, W. G.
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [35] Incorporation of Phase Change Materials into Fibers for Sustainable Thermal Energy Storage
    Ahn, Yun-Ho
    DeWitt, Stephen J. A.
    McGuire, Sheri
    Lively, Ryan P.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (08) : 3374 - 3384
  • [36] Photoswitchable phase change materials for unconventional thermal energy storage and upgrade
    Wu, Si
    Li, Tingxian
    Zhang, Zhao-Yang
    Li, Tao
    Wang, Ruzhu
    MATTER, 2021, 4 (11) : 3385 - 3399
  • [37] Numerical simulation of thermal energy storage based on phase change materials
    Seitov, A.
    Akhmetov, B.
    Georgiev, A. G.
    Kaltayev, A.
    Popov, R. K.
    Dzhonova-Atanasova, D. B.
    Tungatarova, M. S.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2016, 48 : 181 - 188
  • [38] ENERGY STORAGE USING THE PHASE CHANGE MATERIALS: APPLICATION TO THE THERMAL INSULATION
    Hawachi, Ilhem
    Sammouda, Habib
    Bennacer, Rachid
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2014, 5 (02) : 142 - 151
  • [39] Thermal energy storage using phase change materials: a way forward
    Hadiya, J. P.
    Shukla, Ajit Kumar N.
    INTERNATIONAL JOURNAL OF GLOBAL ENERGY ISSUES, 2018, 41 (1-4) : 108 - 127
  • [40] Paraffin/Palygorskite composite phase change materials for thermal energy storage
    Yang, Dan
    Shi, Silan
    Xiong, Lian
    Guo, Haijun
    Zhang, Hairong
    Chen, Xuefang
    Wang, Can
    Chen, Xinde
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 144 : 228 - 234