Domain adaptive detection framework for multi-center bone tumor detection on radiographs

被引:0
|
作者
Li, Bing [1 ,2 ]
Xu, Danyang [3 ]
Lin, Hongxin [1 ]
Wu, Ruodai [4 ,5 ]
Wu, Songxiong [4 ,5 ]
Shao, Jingjing [3 ]
Zhang, Jinxiang [3 ]
Dai, Haiyang [6 ]
Wei, Dan [7 ]
Huang, Bingsheng [1 ]
Gao, Zhenhua [3 ,7 ]
Diao, Xianfen [1 ,8 ]
机构
[1] Shenzhen Univ, Sch Biomed Engn, Med Sch, Med AI Lab, Shenzhen, Peoples R China
[2] Guangdong Pharmaceut Univ, Affiliated Hosp 1, Med Imaging Dept, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Radiol, Guangzhou, Guangdong, Peoples R China
[4] Shenzhen Univ Gen Hosp, Radiol Dept, Shenzhen, Peoples R China
[5] Shenzhen Univ, Clin Med Acad, Shenzhen, Peoples R China
[6] Huizhou City Ctr, Peoples Hosp, Dept Radiol, Huizhou, Guangdong, Peoples R China
[7] Sun Yat Sen Univ, Huiya Hosp, Affiliated Hosp 1, Dept Radiol, Huizhou, Guangdong, Peoples R China
[8] Shenzhen Univ, Med Sch, Natl Reg Key Technol Engn Lab Med Ultrasound, Guangdong Key Lab Biomed Measurements & Ultrasound, Shenzhen, Peoples R China
关键词
Adversarial learning; Bone tumor detection; Domain adaptation; Radiography; CLASSIFICATION; SEGMENTATION;
D O I
10.1016/j.compmedimag.2025.102522
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Automatic bone tumor detection on radiographs is crucial for reducing mortality from bone cancer. However, the performance of the detection methods may be considerably affected when deployed to bone tumor data in a distinct domain, which could be attributed to the differences in the imaging process and can be solved by training with a large amount of annotated data. However, these data are difficult to obtain in clinical practice. To address this challenge, we propose a domain-adaptive (DA) detection framework to effectively bridge the domain gap of bone tumor radiographs across centers, consisting of four parts: a multilevel feature alignment module (MFAM) for image-level alignment, Wasserstein distance critic (WDC) for quantization of feature distance, instance feature alignment module (IFAM) for instance-level alignment, and consistency regularization module (CRM), which maintains the consistency between the domain predictions of MFAM and IFAM. The experimental results indicated that our framework can improve average precision (AP) with an intersection over union threshold of 0.2 (AP@20) on the source and target domain test sets by 1 % and 8.9 %, respectively. Moreover, we designed a domain discriminator with an attention mechanism to improve the efficiency and performance of the domainadaptative bone tumor detection model, which further improved the AP@20 on the source and target domain test sets by 2 % and 10.7 %, respectively. The proposed DA model is expected to bridge the domain gap and address the generalization problem across multiple centers.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Robust Domain Adaptive Object Detection With Unified Multi-Granularity Alignment
    Zhang, Libo
    Zhou, Wenzhang
    Fan, Heng
    Luo, Tiejian
    Ling, Haibin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 9161 - 9178
  • [42] A Community Detection Algorithm based on Multi-Domain Adaptive Spectral Clustering
    Li You-hong
    Zhan Yin-wei
    Wang Xue-jun
    PROCEEDINGS OF 2016 IEEE ADVANCED INFORMATION MANAGEMENT, COMMUNICATES, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IMCEC 2016), 2016, : 1293 - 1297
  • [43] A Multi-Center, Qualitative Assessment of Pediatrician and Maternal Perspectives on Rotavirus Vaccines and the Detection of Porcine circovirus
    Daniel C Payne
    Sharon Humiston
    Douglas Opel
    Allison Kennedy
    Mary Wikswo
    Kimberly Downing
    Eileen J Klein
    Ana Kobayashi
    David Locke
    Christina Albertin
    Claudia Chesley
    Mary A Staat
    BMC Pediatrics, 11
  • [44] Multi-center evaluation of a novel chemiluminescent rapid assay for the detection of PR3-ANCA
    Mahler, M.
    Bentow, C.
    Vizjak, A.
    Radice, A.
    Damoiseaux, J.
    Miyara, M.
    Engstler, G.
    Csernok, E.
    Fritzler, M.
    Polanski, S.
    Wilanska, J.
    Blockmans, D.
    Bossuyt, X.
    PRESSE MEDICALE, 2013, 42 (04): : 683 - 684
  • [45] Automated central vein sign detection for the diagnosis of multiple sclerosis - a multi-center validation study
    Manning, A. R.
    Letchuman, V.
    Martin, M. L.
    Gombos, E.
    Robert-Fitzgerald, T.
    Cao, Q.
    Raza, P.
    O'Donnell, C. M.
    Renner, B.
    Daboul, L.
    Rodrigues, P.
    Ramos, M.
    Derbyshire, J.
    Azevedo, C. J.
    Bar-Or, A.
    Caverzasi, E.
    Calabresi, P. A.
    Cree, B. A.
    Freeman, L.
    Roland, H. G.
    Longbrake, E. E.
    Oh, J.
    Papinutto, N.
    Pelletier, D.
    Samudralwar, R. D.
    Suthiphosuwan, S.
    Schindler, M. K.
    Sotirchos, E.
    Sicotte, N. L.
    Al-Louzi, O.
    Solomon, A. J.
    Reich, D. S.
    Ontaneda, D.
    Sati, P.
    Shinohara, R. T.
    MULTIPLE SCLEROSIS JOURNAL, 2021, 27 (2_SUPPL) : 440 - 441
  • [46] IMPACT OF WITHDRAWAL TIME ON ADENOMA DETECTION RATE: RESULTS FROM A PROSPECTIVE MULTI-CENTER TRIAL
    Desai, Madhav
    Rex, Douglas K.
    Bohm, Matthew
    Davitkov, Perica
    Dewitt, John M.
    Fischer, Monika
    Faulx, Gregory
    Heath, Ryan
    Imler, Timothy D.
    James-Stevenson, Toyia N.
    Kahi, Charles
    Kessler, William R.
    Kohli, Divyanshoo R.
    McHenry, Lee
    Rai, Tarun
    Rogers, Nicholas
    Sagi, Sashidhar
    Sathyamurthy, Anjana
    Vennalaganti, Prashanth
    Sundaram, Suneha
    Patel, Harsh K.
    Higbee, April
    Kennedy, Kevin
    Campbell, Carlissa
    Lahr, Rachel
    Stojadinovikj, Gjorgje
    Dasari, Chandra S.
    Parasa, Sravanthi
    Faulx, Ashley L.
    Melquist, Stephanie J.
    Sharma, Prateek
    GASTROINTESTINAL ENDOSCOPY, 2022, 95 (06) : AB164 - AB165
  • [47] A Multi-Center, Qualitative Assessment of Pediatrician and Maternal Perspectives on Rotavirus Vaccines and the Detection of Porcine circovirus
    Payne, Daniel C.
    Humiston, Sharon
    Opel, Douglas
    Kennedy, Allison
    Wikswo, Mary
    Downing, Kimberly
    Klein, Eileen J.
    Kobayashi, Ana
    Locke, David
    Albertin, Christina
    Chesley, Claudia
    Staat, Mary A.
    BMC PEDIATRICS, 2011, 11
  • [48] Prospective multi-center study of an automatic online seizure detection system for epilepsy monitoring units
    Fuerbass, F.
    Ossenblok, P.
    Hartmann, M.
    Perko, H.
    Skupch, A. M.
    Lindinger, G.
    Elezi, L.
    Pataraia, E.
    Colon, A. J.
    Baumgartner, C.
    Kluge, T.
    CLINICAL NEUROPHYSIOLOGY, 2015, 126 (06) : 1124 - 1131
  • [49] Detection of chromosome abnormalities using current noninvasive prenatal testing: A multi-center comparative study
    Du, Yan
    Lin, Jing
    Lan, Likun
    Dong, Ying
    Zhu, Jun
    Jiang, Wen
    Pan, Xinyao
    Lu, Youhui
    Li, Dajin
    Wang, Ling
    BIOSCIENCE TRENDS, 2018, 12 (03) : 317 - 324
  • [50] Discovery of serum proteomic biomarkers for the early detection of breast cancer- a multi-center study
    Li, Jinong
    Rosenzweig, C. Nicole
    Zhang, Zhen
    Orlandi, Rosaria
    Seregni, Ettore
    Morelli, Daniele
    Mills, Gordon B.
    Chan, Daniel W.
    CANCER RESEARCH, 2006, 66 (08)