Structural and magnetoresistive properties of multilayer Co77Fe17Ni6/Cu and Co77Fe17Ni6/Cu96In4 nanostructures with a number of magnetic layers and nonmagnetic interlayers of 1 to 11 are studied. The sharp axial < 111 > texture and more perfect interfaces are shown to form in the nanostructures with Cu96In4 interlayers, and a relatively small magnetoresistance hysteresis is observed. Atomic force microscopy is used to estimate the surface roughness and crystallite size of the samples under study. As the number of layers in the Cu96In4-based samples increases, the crystallite size is found to slightly change from layer to layer in the range of 18-22 nm, whereas, for the Cu-based sample, the crystallite size substantially increases. For superlattices with Cu interlayers, the 10-fold decrease in the magnetoresistance is observed as the thickness of Co77Fe17Ni6 layers slightly, namely, from 1.5 to 2 nm increases.