Dynamical accretion flows ALMAGAL: Flows along filamentary structures in high-mass star-forming clusters

被引:0
|
作者
Wells, M. R. A. [1 ]
Beuther, H. [1 ]
Molinari, S. [2 ]
Schilke, P. [3 ]
Battersby, C. [4 ]
Ho, P. [5 ,6 ]
Sanchez-Monge, A. [7 ,8 ]
Jones, B. [3 ]
Scheuck, M. B. [1 ]
Syed, J. [1 ]
Gieser, C. [40 ]
Kuiper, R. [26 ]
Elia, D. [2 ]
Coletta, A. [2 ,25 ]
Traficante, A. [2 ]
Wallace, J. [4 ]
Rigby, A. J. [41 ]
Klessen, R. S. [9 ,10 ]
Zhang, Q. [11 ]
Walch, S. [3 ,12 ]
Beltran, M. T. [13 ]
Tang, Y. [5 ]
Fuller, G. A. [3 ,14 ,15 ]
Lis, D. C. [16 ]
Moeller, T. [3 ]
van der Tak, F. [17 ,18 ]
Klaassen, P. D. [19 ]
Clarke, S. D. [3 ,5 ]
Moscadelli, L. [13 ]
Mininni, C. [2 ]
Zinnecker, H. [39 ]
Maruccia, Y. [2 ]
Pezzuto, S. [2 ]
Benedettini, M. [2 ]
Soler, J. D. [2 ]
Brogan, C. L. [20 ]
Avison, A. [14 ,15 ,21 ,22 ]
Sanhueza, P. [23 ,24 ]
Schisano, E. [2 ]
Liu, T. [27 ]
Fontani, F. [13 ,28 ,29 ]
Rygl, K. L. J. [30 ,31 ]
Wyrowski, F. [32 ]
Bally, J. [33 ]
Walker, D. L. [21 ]
Ahmadi, A. [34 ]
Koch, P. [5 ]
Merello, M. [35 ]
Law, C. Y. [36 ,37 ]
Testi, L. [13 ,38 ]
机构
[1] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany
[2] INAF Ist Astrofis & Planetol Spaziale, Via Fosso Cavaliere 100, I-00133 Rome, Italy
[3] Univ Cologne, Phys Inst 1, Zulpicher Str 77, D-50937 Cologne, Germany
[4] Univ Connecticut, Dept Phys, 2152 Hillside Rd,Unit 3046, Storrs, CT 06269 USA
[5] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan
[6] East Asian Observ, 660 N Aohoku Pl, Hilo, HI 96720 USA
[7] CSIC, Inst Ciencies Espai ICE, Can Magrans S N, E-08193 Barcelona, Spain
[8] Inst Estudis Espacials Catalunya IEEC, Barcelona, Spain
[9] Heidelberg Univ, Inst Theoret Astrophys, Zentrum Astron, Heidelberg, Germany
[10] Heidelberg Univ, Interdisziplinares Zentrum Wissenschaftl Rechnen, D-69120 Heidelberg, Germany
[11] Harvard Smithsonian Ctr Astrophys, 160 Garden St, Cambridge, MA 02420 USA
[12] Univ Cologne, Ctr Data & Simulat Sci, Cologne, Germany
[13] INAF Osservatorio Astrofisico Arcetri, Largo E Fermi 5, I-50125 Florence, Italy
[14] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 3PL, England
[15] Univ Manchester, UK ALMA Reg Ctr Node, Sch Phys & Astron, Manchester M13 3PL, England
[16] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[17] SRON Netherlands Inst Space Res, Landleven 12, NL-9747 AD Groningen, Netherlands
[18] Univ Groningen, Kapteyn Astron Inst, Groningen, Netherlands
[19] Royal Observ Edinburgh, UK Astron Technol Ctr, Blackford Hill, Edinburgh EH9 3HJ, Scotland
[20] Natl Radio Astron Observ NRAO, 520 Edgemont Rd, Charlottesville, VA 22903 USA
[21] UK ALMA Reg Ctr Node, Manchester M13 9PL, England
[22] Jodrell Bank, SKA Observ, Lower Withington SK11 9FT, England
[23] Natl Inst Nat Sci, Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan
[24] SOKENDAI Grad Univ Adv Studies, Dept Astron Sci, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan
[25] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[26] Univ Duisburg Essen, Fac Phys, Duisburg, Germany
[27] Chinese Acad Sci, Shanghai Astron Observ, 80 Nandan Rd, Shanghai 200030, Peoples R China
[28] Max Planck Inst Extraterr Phys, Ctr Astrochem Studies, Giessenbachstr 1, D-85748 Garching, Germany
[29] PSL Res Univ, Sorbonne Univ, CNRS, LERMA,Observ Paris, F-92190 Meudon, France
[30] INAF Ist Radioastron, Via P Gobetti 101, I-40129 Bologna, Italy
[31] Italian ALMA Reg Ctr, Via P Gobetti 101, I-40129 Bologna, Italy
[32] Max Planck Inst Radioastron MPIfR, Auf dem Hugel 69, D-53121 Bonn, Germany
[33] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80389 USA
[34] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[35] Univ Chile, Dept Astron, Santiago, Chile
[36] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany
[37] Chalmers Univ Technol, Dept Space Earth & Environm, SE-412 96 Gothenburg, Sweden
[38] CNAF, Viale Berti Pichat 6 2, Bologna, Italy
[39] Univ Autonoma Chile, Nucl Astroquim & Astrofis, Avda Pedro de Valdivia 425, Santiago 7500912, Chile
[40] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85749 Garching, Germany
[41] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, England
基金
中国国家自然科学基金; 欧洲研究理事会; 国家重点研发计划; 美国国家航空航天局;
关键词
accretion; accretion disks; stars: evolution; stars: massive; COMPACT SOURCE CATALOG; GALACTIC PLANE; HOT CORES; FRAGMENTATION; GAL; CLUMPS; DUST; PROTOSTARS; PROGRAM; ASTROPY;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Investigating the flow of material along filamentary structures towards the central core can help provide insights into high-mass star formation and evolution. Aims. Our main motivation is to answer the question of what the properties of accretion flows are in star-forming clusters. We used data from the ALMA Evolutionary Study of High Mass Protocluster Formation in the Galaxy (ALMAGAL) survey to study 100 ALMAGAL regions at a similar to 1 '' resolution, located between similar to 2 and 6 kpc. Methods. Making use of the ALMAGAL similar to 1.3 mm line and continuum data, we estimated flow rates onto individual cores. We focus specifically on flow rates along filamentary structures associated with these cores. Our primary analysis is centered around position velocity cuts in H2CO (3(0, 3)-2(0, 2)), which allow us to measure the velocity fields surrounding these cores. Combining this work with column density estimates, we were able to derive the flow rates along the extended filamentary structures associated with cores in these regions. Results. We selected a sample of 100 ALMAGAL regions, covering four evolutionary stages from quiescent to protostellar, young stellar objects (YSOs), and HII regions (25 each). Using a dendrogram and line analysis, we identify a final sample of 182 cores in 87 regions. In this paper, we present 728 flow rates for our sample (4 per core), analysed in the context of evolutionary stage, distance from the core, and core mass. On average, for the whole sample, we derived flow rates on the order of similar to 10(-4) M-circle dot yr(-1) with estimated uncertainties of +/- 50%. We see increasing differences in the values among evolutionary stages, most notably between the less evolved (quiescent and protostellar) and more evolved (YSO and HII region) sources and we also see an increasing trend as we move further away from the centre of these cores. We also find a clear relationship between the calculated flow rates and core masses similar to M-2/3, which is in line with the result expected from the tidal-lobe accretion mechanism. The significance of these relationships is tested with Kolmogorov-Smirnov and Mann-Whitney U tests. Conclusions. Overall, we see an increasing trend in the relationships between the flow rate and the three investigated parameters, namely: evolutionary stage, distance from the core, and core mass.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] The high-mass star-forming region IRAS 18182-1433
    Beuther, H.
    Zhang, Q.
    Sridharan, T. K.
    Lee, C. -F.
    Zapata, L. A.
    ASTRONOMY & ASTROPHYSICS, 2006, 454 (01) : 221 - 231
  • [42] SUBARCSECOND IMAGING OF THE HIGH-MASS STAR-FORMING REGION ONSALA 1
    Su, Yu-Nung
    Liu, Sheng-Yuan
    Lim, Jeremy
    ASTROPHYSICAL JOURNAL, 2009, 698 (02): : 1981 - 1988
  • [43] Nitrogen fractionation in high-mass star-forming cores across the Galaxy
    Colzi, L.
    Fontani, F.
    Rivilla, V. M.
    Sanchez-Monge, A.
    Testi, L.
    Beltran, M. T.
    Caselli, P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (03) : 3693 - 3720
  • [44] EMISSION MECHANISM OF "GREEN FUZZIES" IN HIGH-MASS STAR-FORMING REGIONS
    Takami, Michihiro
    Chen, How-Huan
    Karr, Jennifer L.
    Lee, Hsu-Tai
    Lai, Shih-Ping
    Minh, Young-Chol
    ASTROPHYSICAL JOURNAL, 2012, 748 (01):
  • [45] The Star-formation Law in Galactic High-mass Star-forming Molecular Clouds
    Retes-Romero, R.
    Mayya, Y. D.
    Luna, A.
    Carrasco, L.
    ASTROPHYSICAL JOURNAL, 2017, 839 (02):
  • [46] Filamentary Network and Magnetic Field Structures Revealed with BISTRO in the High-mass Star-forming Region NGC 2264: Global Properties and Local Magnetogravitational Configurations
    Wang, Jia-Wei
    Koch, Patrick M.
    Clarke, Seamus D.
    Fuller, Gary
    Peretto, Nicolas
    Tang, Ya-Wen
    Yen, Hsi-Wei
    Lai, Shih-Ping
    Ohashi, Nagayoshi
    Arzoumanian, Doris
    Johnstone, Doug
    Furuya, Ray
    Inutsuka, Shu-ichiro
    Lee, Chang Won
    Ward-Thompson, Derek
    Le Gouellec, Valentin J. M.
    Liu, Hong-Li
    Fanciullo, Lapo
    Hwang, Jihye
    Pattle, Kate
    Poidevin, Frederick
    Tahani, Mehrnoosh
    Onaka, Takashi
    Rawlings, Mark G.
    Chung, Eun Jung
    Liu, Junhao
    Lyo, A-Ran
    Priestley, Felix
    Hoang, Thiem
    Tamura, Motohide
    Berry, David
    Bastien, Pierre
    Ching, Tao-Chung
    Coude, Simon
    Kwon, Woojin
    Chen, Mike
    Eswaraiah, Chakali
    Soam, Archana
    Hasegawa, Tetsuo
    Qiu, Keping
    Bourke, Tyler L.
    Byun, Do-Young
    Chen, Zhiwei
    Chen, Huei-Ru Vivien
    Chen, Wen Ping
    Cho, Jungyeon
    Choi, Minho
    Choi, Yunhee
    Choi, Youngwoo
    Chrysostomou, Antonio
    ASTROPHYSICAL JOURNAL, 2024, 962 (02):
  • [47] TWO NEW SiO MASER SOURCES IN HIGH-MASS STAR-FORMING REGIONS
    Cho, Se-Hyung
    Yun, Youngjoo
    Kim, Jaeheon
    Liu, Tie
    Kim, Kee-Tae
    Choi, Minho
    ASTROPHYSICAL JOURNAL, 2016, 826 (02):
  • [48] Deconstructing the high-mass star-forming region IRAS 23033+5951
    Reid, Michael A.
    Matthews, Brenda C.
    ASTROPHYSICAL JOURNAL, 2008, 675 (02): : 1343 - 1351
  • [49] Periodicity in Class II methanol masers in high-mass star-forming regions
    Goedhart, S.
    Maswanganye, J. P.
    Gaylard, M. J.
    van der Walt, D. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (02) : 1808 - 1820
  • [50] The complex high-mass star-forming region IRAS 15507-5359
    Persi, P.
    Tapia, M.
    Roth, M.
    Elia, D.
    Lopez-Vazquez, J. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 459 (02) : 1946 - 1958