Expansive Measures of Nonautonomous Iterated Function Systems

被引:0
|
作者
Cui, Mengxin [1 ,2 ]
Selmi, Bilel [3 ]
Li, Zhiming [1 ]
机构
[1] Northwest Univ, Sch Math, Xian 710127, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[3] Univ Monastir, Fac Sci Monastir, Dept Math, Anal Probabil & Fractals Lab LR18ES17, Monastir 5000, Tunisia
基金
中国国家自然科学基金;
关键词
Nonautonomous iterated function systems; Positively expansive measures; Complexity; Stable point; MAPS; SETS;
D O I
10.1007/s12346-024-01216-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we explore expansive measures and expansiveness within the context of nonautonomous iterated function systems. Specifically, we demonstrate that the set of expansive measures for any nonautonomous iterated function system forms a G delta sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\delta \sigma }$$\end{document} subset of the set of all Borel measures.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] On chaos for iterated function systems
    Bahabadi, Alireza Zamani
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (04)
  • [42] Ends of iterated function systems
    Gregory R. Conner
    Wolfram Hojka
    Mathematische Zeitschrift, 2014, 277 : 1073 - 1083
  • [43] Chaotic iterated function systems
    Sarizadeh, Aliasghar
    ARCHIV DER MATHEMATIK, 2022, 119 (05) : 531 - 538
  • [44] Attractors for iterated function systems
    D'Aniello, Emma
    Steele, T. H.
    JOURNAL OF FRACTAL GEOMETRY, 2016, 3 (02) : 95 - 117
  • [45] Chaotic iterated function systems
    Aliasghar Sarizadeh
    Archiv der Mathematik, 2022, 119 : 531 - 538
  • [46] Parabolic iterated function systems
    Mauldin, RD
    Urbanski, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 1423 - 1447
  • [47] Chaos in Iterated Function Systems
    Mohtashamipour, Maliheh
    Bahabadi, Alireza Zamani
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (12):
  • [48] RECURRENT ITERATED FUNCTION SYSTEMS
    Mihail, Alexandru
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 53 (01): : 43 - 53
  • [49] Quantum iterated function systems
    Lozinski, A
    Zyczkowski, K
    Slomczynski, W
    PHYSICAL REVIEW E, 2003, 68 (04):
  • [50] Cyclic iterated function systems
    Pasupathi, R.
    Chand, A. K. B.
    Navascues, M. A.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (03)