EXTENDING CONGRUENCES FOR OVERPARTITIONS WITH ℓ-REGULAR NONOVERLINED PARTS

被引:0
|
作者
Sellers, James a. [1 ]
机构
[1] Univ Minnesota Duluth, Duluth, MN 55812 USA
关键词
partitions; congruences; overpartitions; generating functions; RAMANUJAN-TYPE CONGRUENCES; INFINITE FAMILIES; ARITHMETIC PROPERTIES; MODULO POWERS;
D O I
10.1017/S0004972724001023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Alanazi et al. ['Refining overpartitions by properties of nonoverlined parts', Contrib. Discrete Math. 17(2) (2022), 96-111] considered overpartitions wherein the nonoverlined parts must be & ell;-regular, that is, the nonoverlined parts cannot be divisible by the integer & ell;. In the process, they proved a general parity result for the corresponding enumerating functions. They also proved some specific congruences for the case & ell; = 3. In this paper we use elementary generating function manipulations to significantly extend this set of known congruences for these functions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] REFINING OVERPARTITIONS BY PROPERTIES OF NONOVERLINED PARTS
    Alanazi, A. M.
    Alenazi, B. M.
    Keith, W. J.
    Munagi, A. O.
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2022, 17 (02) : 96 - 111
  • [2] Congruences for l-regular overpartitions into odd parts
    Shivashankar, C.
    Gireesh, D. S.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (01):
  • [3] New congruences for overpartitions with l-regular overlined parts
    Buragohain, Pujashree
    Saikia, Nipen
    JOURNAL OF ANALYSIS, 2023, 31 (03): : 1819 - 1837
  • [4] Congruences for -regular overpartitions and Andrews' singular overpartitions
    Barman, Rupam
    Ray, Chiranjit
    RAMANUJAN JOURNAL, 2018, 45 (02): : 497 - 515
  • [5] Congruences for overpartitions with l-regular over-lined parts
    Shivanna, Gireesh Dapparthi
    Chandrappa, Shivashankar
    JOURNAL OF ANALYSIS, 2023, 31 (01): : 459 - 474
  • [6] NEW CONGRUENCES FOR l-REGULAR OVERPARTITIONS
    Jindal, Ankita
    Meher, Nabin K.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (05) : 945 - 962
  • [7] Congruences for [j,k] - overpartitions with even parts distinct
    Naika, M. S. Mahadeva
    Harishkumar, T.
    Veeranayaka, T. N.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [8] Infinite families of congruences for k-regular overpartitions
    Ray, Chiranjit
    Barman, Rupam
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (01) : 19 - 29
  • [9] Congruences modulo powers of 2 for l-regular overpartitions
    Adiga, Chandrashekar
    Ranganatha, D.
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2017, 32 (02) : 147 - 163
  • [10] New congruences for [j,k]-overpartitions with even parts distinct
    da Silva, Robson
    Gama, Marcelo C.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (01):