Yishen paidu pills attenuates 5/6 nephrectomy induced kidney disease via inhibiting the PI3K/AKT/mTOR signaling pathway

被引:1
|
作者
Liu, Saiji [1 ]
Cao, Yiling [1 ]
Yuan, Qian [1 ]
Xie, Yaru [1 ]
Zhu, Yuting [1 ]
Yao, Lijun [1 ]
Zhang, Chun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Nephrol, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
network pharmacology; transcriptomics; 5/6; nephrectomy; PI3K/AKT/mTOR; yishen paidu pills; FIBROSIS; MECHANISMS; PREVENTION;
D O I
10.3389/fphar.2024.1510098
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Introduction Chronic kidney disease (CKD) is a substantial global health issue with high morbidity and mortality. Yishen Paidu Pills (YSPDP) are effective concentrated water pills composed of four herbs developed by Wuhan Union Hospital to treat CKD. However, the mechanism of YSPDP action is largely unknown. This study combined metabolomics, network pharmacology, transcriptomics, and experimental verification to elucidate and identify the effects and potential mechanisms of YSPDP against CKD.Methods Firstly, we used metabolomics analyses to identify the chemical components of YSPDP. Then, network pharmacology was conducted and indicated the predicted signaling pathways regulated by YSPDP. Next, we conducted a 5/6 subtotal nephrectomy (5/6 SNx) rat model and treated these rats with YSPDP or Losartan for 10 weeks to evaluate the effect of YSPDP on CKD. To further analyze the underlying mechanism of YSPDP in CKD, the kidney tissues of 5/6 SNx rats treated with vehicle and YSPDP were performed with transcriptome sequencing. Finally, the western blot was performed to validate the signaling pathways of YSPDP against CKD.Results Twenty-four classes of chemicals were identified by metabolomics in YSPDP. YSPDP markedly hindered CKD progression, characterized by the restoration of body weight and serum albumin levels, improved renal function, diminished tissue injury, and hampered renal fibrosis in 5/6 SNx rats. The efficacy of YSPDP in ameliorating the progression of CKD was comparable to that of losartan. Furthermore, network pharmacology, transcriptomics, and functional enrichment analysis indicated the PI3K/AKT/mTOR signaling pathway was the key pathway regulated by YSPDP. Western blot validated the inhibition of PI3K/AKT/mTOR signaling in the kidney of 5/6 SNx rats treated by YSPDP.Conclusion The study identified the chemicals of YSPDP and revealed that YSPDP prevented the progression of CKD by inhibiting PI3K/AKT/mTOR signaling in 5/6 SNx rats.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] ANXA6 Contributes to Radioresistance by Promoting Autophagy via Inhibiting the PI3K/AKT/mTOR Signaling Pathway in Nasopharyngeal Carcinoma
    Chen, Qianping
    Zheng, Wang
    Zhu, Lin
    Yao, Dan
    Wang, Chen
    Song, Yimeng
    Hu, Songling
    Liu, Hongxia
    Bai, Yang
    Pan, Yan
    Zhang, Jianghong
    Guan, Jian
    Shao, Chunlin
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [22] Tenacissoside H repressed the progression of glioblastoma by inhibiting the PI3K/Akt/mTOR signaling pathway
    Dong, Jianhong
    Qian, Yiming
    Zhang, Wei
    Xu, Jiayun
    Wang, Lipei
    Fan, Ziwei
    Jia, Mengxian
    Wei, Lijia
    Yang, Hui
    Luo, Xuan
    Wang, Yongjie
    Jiang, Yuanyuan
    Huang, Zhihui
    Wang, Ying
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2024, 968
  • [23] Calcium Dobesilate Restores Autophagy by Inhibiting the VEGF/PI3K/AKT/mTOR Signaling Pathway
    Wang, Yue
    Lu, Yun-hong
    Tang, Chao
    Xue, Mei
    Li, Xiao-yu
    Chang, Yun-peng
    Cheng, Ying
    Li, Ting
    Yu, Xiao-chen
    Sun, Bei
    Li, Chun-jun
    Chen, Li-ming
    FRONTIERS IN PHARMACOLOGY, 2019, 10
  • [24] Chrysoeriol alleviated inflammation in infantile pneumonia by inhibiting PI3K/AKT/mTOR signaling pathway
    Wang, Yan
    Hong, Qiuyue
    TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 2022, 21 (07) : 1431 - 1436
  • [25] Sivelestat improves acute lung injury by inhibiting PI3K/AKT/mTOR signaling pathway
    Zhou, Yaqing
    Wang, Haiyan
    Liu, Aiming
    Pu, Zunguo
    Ji, Qiuxia
    Xu, Jianhua
    Xu, Yuehua
    Wang, Ying
    PLOS ONE, 2024, 19 (06):
  • [26] Gypenoside-Induced Apoptosis via the PI3K/AKT/mTOR Signaling Pathway in Bladder Cancer
    Li, Xiuming
    Liu, Hui
    Lv, Chengcheng
    Du, Jun
    Lian, Fangchao
    Zhang, Shouyi
    Wang, Zhiyong
    Zeng, Yu
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [27] URSOLIC ACID ATTENUATES HG-INDUCED PODOCYTE AND MESANGIAL INJURY BY INHIBITING PI3K/AKT/MTOR PATHWAY
    Fan Qiuling
    NEPHROLOGY, 2014, 19 : 173 - 174
  • [28] Sodium Propionate Attenuates the Lipopolysaccharide-Induced Epithelial-Mesenchymal Transition via the PI3K/Akt/mTOR Signaling Pathway
    Chen, Dan
    Qiu, Yu-bao
    Gao, Zhi-qi
    Wu, Ya-xian
    Wan, Bin-bin
    Liu, Gang
    Chen, Jun-liang
    Zhou, Qin
    Yu, Renqiang
    Pang, Qingfeng
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (24) : 6554 - 6563
  • [29] PirB inhibits axonal outgrowth via the PI3K/Akt/mTOR signaling pathway
    Bi, Yong-Yan
    Quan, Yong
    MOLECULAR MEDICINE REPORTS, 2018, 17 (01) : 1093 - 1098
  • [30] Tocopherol attenuates the oxidative stress of BMSCs by inhibiting ferroptosis through the PI3k/AKT/mTOR pathway
    Lan, Dongmei
    Yao, Chao
    Li, Xue
    Liu, Haijiang
    Wang, Dan
    Wang, Yan
    Qi, Shengcai
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10