Position and heading estimation for indoor navigation of a micro aerial vehicle using vanishing point

被引:0
|
作者
Anbarasu, B. [1 ]
机构
[1] Hindustan Inst Technol & Sci, Chennai, India
来源
关键词
micro aerial vehicle; indoor navigation; heading estimation; vanishing point; QUADROTOR;
D O I
10.1017/S0373463324000286
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Indoor navigation for micro aerial vehicles (MAVs) is challenging in GPS signal-obstructed indoor corridor environments. Position and heading estimation for a MAV is required to navigate without colliding with obstacles. The connected components algorithm and k-means clustering algorithm have been integrated for line and vanishing point detection in the corridor image frames to estimate the position and heading of the MAV. The position of the vanishing point indicates the position of the MAV (centre, left or right) in the corridor. Furthermore, the Euclidean distance between the image centre and mid-pixel coordinates at the last row of the image and the detected vanishing point pixel coordinates in the successive corridor image frames are used to compute the heading of the MAV. When the MAV deviates from the corridor centre, the position and heading measurement can send a suitable control signal to the MAV and align the MAV at the centre of the corridor. When compared with a grid-based vanishing point detection method heading accuracy of +/- 1 & sdot;5 degrees, the k-means clustering-based vanishing point detection is suitable for real-time heading measurement for indoor MAVs with an accuracy of +/- 0 & sdot;5 degrees.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Output Feedback control of Micro Aerial Vehicle In Indoor Environment
    Efraim, Hanoch
    Arogeti, Shai
    Shapiro, Amir
    Weiss, Gera
    2015 23RD MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2015, : 688 - 694
  • [42] Vehicle Position Estimation with Aerial Imagery from Unmanned Aerial Vehicles
    Kruber, Friedrich
    Morales, Eduardo Sanchez
    Chakraborty, Samarjit
    Botsch, Michael
    2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 2089 - 2096
  • [43] FlyAR: Augmented Reality Supported Micro Aerial Vehicle Navigation
    Zollmann, Stefanie
    Hoppe, Christof
    Langlotz, Tobias
    Reitmayr, Gerhard
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (04) : 560 - 568
  • [44] Unmanned Aerial Vehicle Position Estimation Augmentation Using Optical Flow Sensor
    Li, Xiang
    Xu, Qing
    Tang, Yanmei
    Hu, Cong
    Niu, Junhao
    Xu, Chuanpei
    IEEE SENSORS JOURNAL, 2023, 23 (13) : 14773 - 14780
  • [45] Indoor Scene Recognition for Micro Aerial Vehicles Navigation using Enhanced-GIST Descriptors
    Anbarasu, B.
    Anitha, G.
    DEFENCE SCIENCE JOURNAL, 2018, 68 (02) : 129 - 137
  • [46] Efficient Vanishing Point Estimation for Accurate Camera Rotation Estimation in Indoor Environments
    Yan, Dayu
    Jiang, Haitao
    Li, Tuan
    Shi, Chuang
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (11) : 6899 - 6906
  • [47] Vision-Based Heading and Lateral Deviation Estimation for Indoor Navigation of a Quadrotor
    Balasubramanian, Anbarasu
    Ganesan, Anitha
    IETE JOURNAL OF RESEARCH, 2017, 63 (04) : 597 - 603
  • [48] INDOOR HEADING DIRECTION ESTIMATION USING RF SIGNALS
    Fan, Yusen
    Zhang, Feng
    Wu, Chenshu
    Wang, Beibei
    Liu, K. J. Ray
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1628 - 1632
  • [49] Research on vision navigation and position system of agricultural unmanned aerial vehicle
    Zhao, Weilun
    Xu, Tongyu
    Wang, Yan
    Du, Wen
    Shen, Aibing
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2020, 33 (10-11) : 1185 - 1196
  • [50] ROBUST ONLINE ESTIMATION OF THE VANISHING POINT FOR VEHICLE MOUNTED CAMERAS
    Gupta, Nikhil
    Faraji, Hilda
    He, Daan
    Rathi, Ghanshyam
    2011 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2011,