Adaptive State-of-Health Estimation for Lithium-Ion Battery With Partially Unlabeled and Incomplete Charge Curves

被引:0
|
作者
Liu, Xingchen [1 ]
Hu, Zhiyong [2 ]
Mao, Lei [3 ]
Xie, Min [4 ,5 ]
机构
[1] Hong Kong Polytech Univ, Ctr Adv Reliabil & Safety, Hong Kong, Peoples R China
[2] Anhui Univ, Dept Automat, Hefei 230601, Peoples R China
[3] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230026, Peoples R China
[4] City Univ Hong Kong, Dept Syst Engn, Hong Kong, Peoples R China
[5] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
Gaussian mixture model (GMM); incomplete voltage curve; lithium-ion battery (LIB); online update; variational inference; DATA-DRIVEN METHOD; MODEL;
D O I
10.1109/TTE.2024.3500072
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
State-of-health (SOH) assessment of lithium-ion batteries (LIBs) is essential for electric vehicles (EVs). The existing methods rely on exact capacity labeling for incomplete curves for model training. However, these capacity values cannot be obtained until the charge/discharge process is complete during real operations. Furthermore, the existing models cannot be efficiently updated with newly collected data, causing degenerated performance due to the heterogeneity among different batteries. To overcome these deficiencies, we propose a sequential variational Gaussian mixture regression (SVGMR) model, where the charge curve and capacity are jointly modeled with a Gaussian mixture model (GMM). Due to the generative nature of this model, the information provided by the unlabeled data can also be exploited using the conditional distribution based on observed data to improve the SOH estimation accuracy. In addition, a sequential updating algorithm is developed for online adjustment, which can efficiently assimilate newly collected data of the target battery to further boost the estimation. During the in-field application, the proposed technique can provide SOH estimation with uncertainty based on a random partial segment of the voltage curve. The effectiveness and superiority of the proposed method are validated with case studies.
引用
收藏
页码:6165 / 6176
页数:12
相关论文
共 50 条
  • [21] Critical summary and perspectives on state-of-health of lithium-ion battery
    Yang, Bo
    Qian, Yucun
    Li, Qiang
    Chen, Qian
    Wu, Jiyang
    Luo, Enbo
    Xie, Rui
    Zheng, Ruyi
    Yan, Yunfeng
    Su, Shi
    Wang, Jingbo
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 190
  • [22] A New Hybrid Neural Network Method for State-of-Health Estimation of Lithium-Ion Battery
    Bao, Zhengyi
    Jiang, Jiahao
    Zhu, Chunxiang
    Gao, Mingyu
    ENERGIES, 2022, 15 (12)
  • [23] State-of-Health Estimation of Lithium-Ion Battery Based on Interval Capacity for Electric Buses
    Ye, Baolin
    Zhang, Zhaosheng
    Wang, Shuai
    Ma, Yucheng
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (02): : 6096 - 6106
  • [24] Comparison-Transfer Learning Based State-of-Health Estimation for Lithium-Ion Battery
    Liu, Wei
    Gao, Songchen
    Yan, Wendi
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (04)
  • [25] A neural network based state-of-health estimation of lithium-ion battery in electric vehicles
    Yang, Duo
    Wang, Yujie
    Pan, Rui
    Chen, Ruiyang
    Chen, Zonghai
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2059 - 2064
  • [26] A Unified Deep Learning Optimization Paradigm for Lithium-Ion Battery State-of-Health Estimation
    Cai, Lei
    Cui, Ningmin
    Jin, Haiyan
    Meng, Jinhao
    Yang, Shengxiang
    Peng, Jichang
    Zhao, Xinchao
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2024, 39 (01) : 589 - 600
  • [27] Lithium-Ion Battery State-of-Health Estimation Using the Incremental Capacity Analysis Technique
    Stroe, Daniel-Ioan
    Schaltz, Erik
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (01) : 678 - 685
  • [28] State-of-Health Estimation of Lithium-Ion Battery Based on Constant Voltage Charging Duration
    Chen, Jinyu
    Chen, Dawei
    Han, Xiaolan
    Li, Zhicheng
    Zhang, Weijun
    Lai, Chun Sing
    BATTERIES-BASEL, 2023, 9 (12):
  • [29] Co-estimation of lithium-ion battery state-of-charge and state-of-health based on fractional-order model
    Ye, Lihua
    Peng, Dinghan
    Xue, Dingbang
    Chen, Sijian
    Shi, Aiping
    JOURNAL OF ENERGY STORAGE, 2023, 65
  • [30] Electrochemical Impedance Spectroscopy Based State-of-Health Estimation for Lithium-Ion Battery Considering Temperature and State-of-Charge Effect
    Zhang, Qunming
    Huang, Cheng-Geng
    Li, He
    Feng, Guodong
    Peng, Weiwen
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (04) : 4633 - 4645