A Combined Machine Learning Model for Predicting Pneumonitis of NSCLC Patients Treated with SBRT

被引:0
|
作者
Halder, K. [1 ]
Podder, T. K. [2 ]
Maria-Joseph, F. [1 ]
Zheng, Y. [3 ]
Mix, M. D. [2 ]
Biswas, T. [4 ]
机构
[1] Indian Inst Technol, Roorkee, Uttar Pradesh, India
[2] SUNY Upstate Med Univ, Syracuse, NY 13210 USA
[3] Case Western Reserve Univ, Univ Hosp, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Metro Hlth, Cleveland, OH 44106 USA
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
2120
引用
收藏
页码:E56 / E56
页数:1
相关论文
共 50 条
  • [41] Combined model of frameshift mutations and TMB in predicting response to immunotherapy in NSCLC
    Zhou, H.
    Liu, J.
    Zhang, Y.
    Fang, W.
    Zhang, L.
    ANNALS OF ONCOLOGY, 2019, 30
  • [42] Dose on cardiac (sub)structures as predictor for OS in early stage NSCLC patients treated with SBRT
    Duijm, M.
    Pezzulla, D.
    Schillemans, W.
    Nuyttens, J.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S226 - S227
  • [43] Interpretable Machine Learning for Predicting Symptomatic Pneumonitis in Locally Advanced Non -Small Cell Lung Cancer Patients Treated with Concurrent Chemoradiotherapy and Immune Checkpoint Inhibitor Consolidation
    Duan, L.
    Lee, S. H.
    Yegya-Raman, N.
    Wang, D.
    Li, B.
    Friedes, C.
    Iocolano, M.
    Kao, G. D.
    Fan, Y.
    Caruana, R.
    Feigenberg, S. J.
    Xiao, Y.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E464 - E464
  • [44] Machine learning model selection for predicting bathymetry
    Moran, Nicholas
    Stringer, Ben
    Lin, Bruce
    Hoque, Md Tamjidul
    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2022, 185
  • [45] Predicting and Preventing Malware in Machine Learning Model
    Nisha, D.
    Sivaraman, E.
    Honnavalli, Prasad B.
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,
  • [46] Machine learning combined with solid solution strengthening model for predicting hardness of high entropy alloys
    Yi-Fan, Zhang
    Wei, Ren
    Wei-Li, Wang
    Shu-Jian, Ding
    Nan, Li
    Liang, Chang
    Qian, Zhou
    ACTA PHYSICA SINICA, 2023, 72 (18)
  • [47] Predicting the Mortality of ICU Patients by Topic Model with Machine-Learning Techniques
    Chiu, Chih-Chou
    Wu, Chung-Min
    Chien, Te-Nien
    Kao, Ling-Jing
    Qiu, Jiantai Timothy
    HEALTHCARE, 2022, 10 (06)
  • [48] Predicting fracture risk for elderly osteoporosis patients by hybrid machine learning model
    Liu, Menghan
    Wei, Xin
    Xing, Xiaodong
    Cheng, Yunlong
    Ma, Zicheng
    Ren, Jiwu
    Gao, Xiaofeng
    Xu, Ajing
    DIGITAL HEALTH, 2024, 10
  • [49] Machine Learning Model Predicting Bleeding Risk in Patients With Coronary Artery Disease
    Ishii, Masanobu
    Nakamura, Taishi
    Yamanouchi, Yoshinori
    Otsuka, Yasuhiro
    Ikebe, Sou
    Tsujita, Kenichi
    CIRCULATION, 2023, 148
  • [50] A machine learning-based model for predicting survival in patients with Rectosigmoid Cancer
    Wang, Yifei
    Chen, Bingbing
    Yu, Jinhai
    PLOS ONE, 2025, 20 (03):