A Combined Machine Learning Model for Predicting Pneumonitis of NSCLC Patients Treated with SBRT

被引:0
|
作者
Halder, K. [1 ]
Podder, T. K. [2 ]
Maria-Joseph, F. [1 ]
Zheng, Y. [3 ]
Mix, M. D. [2 ]
Biswas, T. [4 ]
机构
[1] Indian Inst Technol, Roorkee, Uttar Pradesh, India
[2] SUNY Upstate Med Univ, Syracuse, NY 13210 USA
[3] Case Western Reserve Univ, Univ Hosp, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Metro Hlth, Cleveland, OH 44106 USA
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
2120
引用
收藏
页码:E56 / E56
页数:1
相关论文
共 50 条
  • [1] Deep learning predicts survival for early stage NSCLC patients treated with SBRT
    Zheng, S.
    Guo, J.
    Langendijk, J.
    Both, S.
    Veldhuis, R.
    Oudkerk, M.
    van Ooijen, P.
    Wijsman, R.
    Sijtsema, N.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S375 - S376
  • [2] Predicting Disease Progression in Inoperable Localized NSCLC Patients Using ctDNA Machine Learning Model
    Wu, Yuqi
    Li, Canjun
    Yang, Yin
    Zhang, Tao
    Wang, Jianyang
    Tang, Wanxiangfu
    Li, Ningyou
    Bao, Hua
    Wang, Xin
    Bi, Nan
    CANCER MEDICINE, 2024, 13 (20):
  • [3] Predicting overall survival in central NSCLC treated with SBRT: nomogram development and validation
    Duijm, M.
    Oomen-de Hoop, E.
    van Zyp, N. van der Voort
    Tekatli, H.
    Van de Vaart, P.
    Hoogeman, M.
    Senan, S.
    Nuyttens, J.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S408 - S409
  • [4] The impact of comprehensive geriatric assessment in NSCLC patients treated with SBRT
    Jeppesen, S.
    Matzen, L.
    Brink, C.
    Hansen, O.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S446 - S447
  • [5] Predicting Symptomatic Pneumonitis in Lung SBRT Patients Using Decision Tree Analysis
    Petras, K. G.
    Shah, K. K.
    Surucu, M.
    Mescioglu, I.
    Qiu, H.
    Alite, F.
    Roeske, J.
    Emami, B.
    Harkenrider, M. M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2013, 87 (02): : S551 - S551
  • [6] Overall Survival Prediction Utilizing Support Vector Machine with Cluster Partitioning Methodology for NSCLC Patients Treated with SBRT
    Halder, K.
    Biswas, T.
    Maria-Joseph, F.
    Zheng, Y.
    Podder, T. K.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E56 - E57
  • [7] Predicting distant failure in early stage NSCLC treated with SBRT using clinical parameters
    Zhou, Zhiguo
    Folkert, Michael
    Cannon, Nathan
    Iyengar, Puneeth
    Westover, Kenneth
    Zhang, Yuanyuan
    Choy, Hak
    Timmerman, Robert
    Yan, Jingsheng
    Xie, Xian-J.
    Jiang, Steve
    Wang, Jing
    RADIOTHERAPY AND ONCOLOGY, 2016, 119 (03) : 501 - 504
  • [8] Predicting Motion Compensation Errors for CyberKnife SBRT Liver Patients Using a Machine Learning Algorithm
    Liu, M.
    Granville, D.
    Cygler, J. E.
    Vandervoort, E.
    MEDICAL PHYSICS, 2018, 45 (06) : E142 - E142
  • [9] Survival of localized NSCLC patients without active treatment or treated with SBRT
    Jeppesen, S. S.
    Hansen, N. C. G.
    Schytte, T.
    Hansen, O.
    ACTA ONCOLOGICA, 2018, 57 (02) : 219 - 225
  • [10] Does a localized NSCLC treated with SBRT affect the survival in COPD patients?
    Jeppesen, S.
    Hansen, N. C. G.
    Schytte, T.
    Nielsen, M.
    Hansen, O.
    RADIOTHERAPY AND ONCOLOGY, 2016, 119 : S586 - S586