A Credit Card Fraud Detection Algorithm Based on SDT and Federated Learning

被引:0
|
作者
Tang, Yuxuan [1 ]
Liu, Zhanjun [2 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Accounting, Chengdu 611130, Sichuan, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Data models; Fraud; Credit cards; Transformers; Predictive models; Feature extraction; Federated learning; Adaptation models; Accuracy; Distributed databases; Attention mechanisms; deep learning; federated learning; fraud detection; transformer;
D O I
10.1109/ACCESS.2024.3491175
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rise of digital payment methods and the growth in financial transactions, the issue of credit card fraud has become increasingly severe. Traditional fraud detection methods are currently facing challenges such as poor model performance, difficulty in obtaining accurate results, and limitations in distributed deployment. These challenges stem from constantly evolving fraud strategies, higher volumes of transactions, and the complexity of the financial environment. This study proposes a credit card fraud detection algorithm based on Structured Data Transformer (SDT) and federated learning, which leverages the advanced capabilities of the Transformer model in deep learning. First, we organize credit card data into sequences and introduce a special, learnable token at the beginning of each sequence for classification purposes. Thanks to the attention mechanism of the Transformer, the model can automatically highlight important features in the data, significantly improving the accuracy of fraud detection. Second, addressing the complex financial environment and concerns about financial data privacy, we introduce a federated learning architecture to deploy the SDT model across different banks in a distributed manner. Momentum updates are used for model parameter updates during training, which enhance model performance and ensure data privacy between banks. Lastly, we conducted experimental validation on two financial datasets of different scales. The results on Dataset 1 and Dataset 2 show that our proposed SDT model surpasses traditional detection methods in terms of AUC-PR values (0.882, 0.816) and AUC-ROC values (0.982, 0.994). By integrating federated learning and deploying and testing the two datasets in a distributed environment, the AUC-PR values (0.884, 0.892) and AUC-ROC values (0.963, 0.998) can be further improved.
引用
收藏
页码:182547 / 182560
页数:14
相关论文
共 50 条
  • [31] Credit Card Fraud Detection Model-based Machine Learning Algorithms
    Idrees, Amira M.
    Elhusseny, Nermin Samy
    Ouf, Shimaa
    IAENG International Journal of Computer Science, 2024, 51 (10) : 1649 - 1662
  • [32] Applications of Machine Learning in Fintech Credit Card Fraud Detection
    Lacruz, Francisco
    Saniie, Jafar
    2021 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2021, : 276 - 281
  • [33] Prevention of Credit Card Fraud Detection based on HSVM
    Mareeswari, V.
    Gunasekaran, G.
    2016 INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND EMBEDDED SYSTEMS (ICICES), 2016,
  • [34] Credit Card Fraud Detection Based on Transaction Behavior
    Kho, John Richard D.
    Vea, Larry A.
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 1880 - 1884
  • [35] CREDIT CARD FRAUD DETECTION USING MACHINE LEARNING ALGORITHMS
    Tyagi, Rishabh
    Ranjan, Ravi
    Priya, S.
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 334 - 341
  • [36] Machine Learning Methods for Credit Card Fraud Detection: A Survey
    Dastidar, Kanishka Ghosh
    Caelen, Olivier
    Granitzer, Michael
    IEEE ACCESS, 2024, 12 : 158939 - 158965
  • [37] Credit Card Fraud Detection with Automated Machine Learning Systems
    Plakandaras, Vasilios
    Gogas, Periklis
    Papadimitriou, Theophilos
    Tsamardinos, Ioannis
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [38] A Hybrid Machine Learning Approach for Credit Card Fraud Detection
    Gupta, Sonam
    Varshney, Tushtee
    Verma, Abhinav
    Goel, Lipika
    Yadav, Arun Kumar
    Singh, Arjun
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY PROJECT MANAGEMENT, 2022, 13 (03)
  • [39] Credit Card Fraud Detection using Machine Learning Algorithms
    Dornadula, Vaishnavi Nath
    Geetha, S.
    2ND INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ADVANCED COMPUTING ICRTAC -DISRUP - TIV INNOVATION , 2019, 2019, 165 : 631 - 641
  • [40] The role of diversity and ensemble learning in credit card fraud detection
    Paldino, Gian Marco
    Lebichot, Bertrand
    Le Borgne, Yann-Ael
    Siblini, Wissam
    Oble, Frederic
    Boracchi, Giacomo
    Bontempi, Gianluca
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, 18 (01) : 193 - 217