Regional Forest Carbon Stock Estimation Based on Multi-Source Data and Machine Learning Algorithms

被引:0
|
作者
Zheng, Mingwei [1 ,2 ,3 ]
Wen, Qingqing [4 ]
Xu, Fengya [1 ,2 ,3 ]
Wu, Dasheng [1 ,2 ,3 ]
机构
[1] Zhejiang A&F Univ, Coll Math & Comp Sci, Hangzhou 311300, Peoples R China
[2] Key Lab State Forestry & Grassland Adm Forestry Se, Hangzhou 311300, Peoples R China
[3] Key Lab Forestry Intelligent Monitoring & Informat, Hangzhou 311300, Peoples R China
[4] Wucheng Nanshan Prov Nat Reserve Management Ctr Zh, Jinhua 321000, Peoples R China
来源
FORESTS | 2025年 / 16卷 / 03期
基金
中国国家自然科学基金;
关键词
ecological features; remote sensing; LightGBM; RFE; SOIL ORGANIC-CARBON; ABOVEGROUND BIOMASS; TEMPERATE; INDEX;
D O I
10.3390/f16030420
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Accurately assessing forest carbon stock (FCS) is essential for analyzing its spatial distribution and gauging the capacity of forests to sequester carbon. This research introduces a novel approach for estimating FCS by integrating multiple data sources, such as Sentinel-1 (S1) radar imagery, optical images from Sentinel-2 (S2) and Landsat 8 (L8), digital elevation modeling (DEM), and inventory data used in forest management and planning (FMP). Additionally, the estimation of FCS incorporates four key ecological features, including forest composition, primary tree species, humus thickness, and slope direction, to improve the accuracy of the estimation. Subsequently, insignificant features were eliminated using Lasso and recursive feature elimination (RFE) feature selection techniques. Three machine learning (ML) models were employed to estimate FCS: XGBoost, random forest (RF), and LightGBM. The results show that the inclusion of ecological information features improves the performance of the models. Among the models, LightGBM achieved superior performance (R2 = 0.78, mean squared error (MSE) = 0.85, root mean squared error (RMSE) = 0.92, mean absolute error (MAE) = 0.58, relative RMSE (rRMSE) = 41.37%, and mean absolute percentage error (MAPE) = 30.72%), outperforming RF (R2 = 0.76, MSE = 0.93, RMSE = 0.97, MAE = 0.60, rRMSE = 43.42%, and MAPE = 30.85%) and XGBoost (R2 = 0.77, MSE = 0.90, RMSE = 0.95, MAE = 0.61, rRMSE = 42.66%, and MAPE = 34.61%).
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Flow Estimation of Freeway Section Based on Multi-Source Data
    Huang, Shuai
    Sun, Dihua
    Zhao, Min
    Luo, Yanqin
    CICTP 2021: ADVANCED TRANSPORTATION, ENHANCED CONNECTION, 2021, : 533 - 543
  • [32] Learning from multi-source data
    Fromont, E
    Cordier, MO
    Quiniou, R
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2004, PROCEEDINGS, 2004, 3202 : 503 - 505
  • [33] Estimation of PM2.5 Concentration across China Based on Multi-Source Remote Sensing Data and Machine Learning Methods
    Yang, Yujie
    Wang, Zhige
    Cao, Chunxiang
    Xu, Min
    Yang, Xinwei
    Wang, Kaimin
    Guo, Heyi
    Gao, Xiaotong
    Li, Jingbo
    Shi, Zhou
    REMOTE SENSING, 2024, 16 (03)
  • [34] A multi-source approach combining GEDI LiDAR, satellite data, and machine learning algorithms for estimating forest aboveground biomass on Google Earth Engine platform
    Zurqani, Hamdi A.
    ECOLOGICAL INFORMATICS, 2025, 86
  • [35] A Bayesian approach to multi-source forest area estimation
    Andrew O. Finley
    Sudipto Banerjee
    Ronald E. McRoberts
    Environmental and Ecological Statistics, 2008, 15 : 241 - 258
  • [36] Estimation of Soil Moisture Using Multi-Source Remote Sensing and Machine Learning Algorithms in Farming Land of Northern China
    Liu, Quanshan
    Wu, Zongjun
    Cui, Ningbo
    Jin, Xiuliang
    Zhu, Shidan
    Jiang, Shouzheng
    Zhao, Lu
    Gong, Daozhi
    REMOTE SENSING, 2023, 15 (17)
  • [37] A Bayesian approach to multi-source forest area estimation
    Finley, Andrew O.
    Banerjee, Sudipto
    McRoberts, Ronald E.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2008, 15 (02) : 241 - 258
  • [38] Regional yield prediction for winter wheat based on crop biomass estimation using multi-source data
    Ren, Jianqiang
    Li, Su
    Chen, Zhongxin
    Zhou, Qingbo
    Tang, Huajun
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 805 - +
  • [39] Machine Learning Techniques for Fine Dead Fuel Load Estimation Using Multi-Source Remote Sensing Data
    D'Este, Marina
    Elia, Mario
    Giannico, Vincenzo
    Spano, Giuseppina
    Lafortezza, Raffaele
    Sanesi, Giovanni
    REMOTE SENSING, 2021, 13 (09)
  • [40] A Machine Learning Approach for Convective Initiation Detection Using Multi-source Data
    Liu, Xuan
    Chen, Haonan
    Han, Lei
    Ge, Yurong
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6518 - 6521