Model-Free Preference Elicitation

被引:0
|
作者
Martinet, Carlos [2 ,6 ]
Boutilieri, Craig [1 ]
Meshil, Ofer [1 ]
Sandholm, Tuomas [2 ,3 ,4 ,5 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[3] Strategy Robot Inc, Pittsburgh, PA USA
[4] Optimized Markets Inc, Pittsburgh, PA USA
[5] Strateg Machine Inc, Pittsburgh, PA USA
[6] Google, Mountain View, CA 94043 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In recommender systems, preference elicitation (PE) is an effective way to learn about a user's preferences to improve recommendation quality. Expected value of information (EVOI), a Bayesian technique that computes expected gain in user utility, has proven to be effective in selecting useful PE queries. Most EVOI methods use probabilistic models of user preferences and query responses to compute posterior utilities. By contrast, we develop model-free variants of EVOI that rely on function approximation to obviate the need for specific modeling assumptions. Specifically, we learn user response and utility models from existing data (often available in real-world recommender systems), which are used to estimate EVOI rather than relying on explicit probabilistic inference. We augment our approach by using online planning, specifically, Monte Carlo tree search, to further enhance our elicitation policies. We show that our approach offers significant improvement in recommendation quality over standard baselines on several PE tasks.
引用
收藏
页码:3493 / 3503
页数:11
相关论文
共 50 条
  • [41] On Model-free Accommodation of Actuator Nonlinearities
    Zhao, Shen
    Zheng, Qinling
    Gao, Zhiqiang
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 2897 - 2902
  • [42] A model-free approach for testing association
    Chatterjee, Saptarshi
    Chowdhury, Shrabanti
    Basu, Sanjib
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2021, 70 (03) : 511 - 531
  • [43] Model-free envelope dimension selection
    Zhang, Xin
    Mai, Qing
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 2193 - 2216
  • [44] Model-free estimation of the psychometric function
    Zychaluk, Kamila
    Foster, David H.
    ATTENTION PERCEPTION & PSYCHOPHYSICS, 2009, 71 (06) : 1414 - 1425
  • [45] Model-free prediction of microbiome compositions
    Eitan E. Asher
    Amir Bashan
    Microbiome, 12
  • [46] Model-Free Observer for MIMO systems
    Al Younes, Younes
    Noura, Hassan
    Rabhi, Abdelhamid
    El Hajjaji, Ahmed
    2015 IEEE CONFERENCE ON CONTROL AND APPLICATIONS (CCA 2015), 2015, : 1272 - 1277
  • [47] A MODEL-FREE ELASTICITY THEORY OF MELTING
    TALLON, JL
    ROBINSON, WH
    PHYSICS LETTERS A, 1982, 87 (07) : 365 - 368
  • [48] Model-free robot anomaly detection
    Hornung, Rachel
    Urbanek, Holger
    Klodmann, Julian
    Osendorfer, Christian
    van der Smagt, Patrick
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 3676 - 3683
  • [49] A model-free approach for posture classification
    Castiello, C
    D'Orazio, T
    Fanelli, AM
    Spagnolo, P
    Torsello, MA
    AVSS 2005: ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, PROCEEDINGS, 2005, : 276 - 281
  • [50] Valid Model-Free Spatial Prediction
    Mao, Huiying
    Martin, Ryan
    Reich, Brian J. J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 904 - 914