Structural Motifs and Evolution of Boron Nanoclusters

被引:0
|
作者
Ekaterina D. Anisimova [1 ]
Elizaveta E. Vaneeva [1 ]
Vladimir S. Baturin [2 ]
Sergey V. Lepeshkin [1 ]
Artem R. Oganov [1 ]
机构
[1] Skolkovo Institute of Science and Technology,Lebedev Physical Institute
[2] Russian Academy of Sciences,undefined
关键词
Boron clusters; USPEX; Aromaticity; Antiaromaticity; Multicenter indexes; Adaptive natural density partitioning;
D O I
10.1007/s10876-025-02815-0
中图分类号
学科分类号
摘要
Boron is a chemically versatile element, capable of forming diverse chemical bonds (e.g., single, double, triple, 3-center 2-electron bonds, and more), which determines its chemical behavior as a pure substance and in compounds with other elements. Electron deficiency and tendency to form multicenter bonds give rise to the ubiquitous presence of clusters in structures of boron allotropes and of many boron compounds in bulk and molecular forms. Here we investigate a wide range of neutral boron clusters Bn (n = 2–60) using the first-principles evolutionary algorithm USPEX. We find clear preference for planar structures for n < 10, while there is a competition between planar, cage, bilayer, and tubular structures for n > 10. We identify magic clusters as those having positive second-order differences of the total energy (and additionally analyze their fragmentation energy and HOMO–LUMO gap). Most of the magic clusters have even n, the most notable exception being magnetic cluster B39 with cuboctahedral shape. Investigating the concept of aromaticity of inorganic compounds, we applied such approaches as nuclear independent chemical shift (NICS) and adaptive natural density partitioning (AdNDP) to a number of boron clusters and found that two clusters, B10 and B13, are aromatic (the former being magic).
引用
收藏
相关论文
共 50 条
  • [21] Structural evolution of WO3 nanoclusters on ZrO2
    Angeles-Chavez C.
    Cortes-Jácome M.A.
    Torres-Garcia E.
    Toledo-Antonio J.A.
    Journal of Materials Research, 2006, 21 (4) : 807 - 810
  • [22] Influence of composition and size on the thermodynamic stability and structural evolution of CuAlNi nanoclusters
    Qing Liu
    Ye Su
    Keke Song
    Xiaoxu Wang
    Panpan Gao
    Chutian Wang
    Yuqin Xiao
    Xiaodong Jian
    Ping Qian
    Progress in Natural Science:Materials International, 2020, 30 (04) : 477 - 484
  • [23] Stuffed fullerenelike boron carbide nanoclusters
    Prasad, Dasari L. V. K.
    Jemmis, Eluvathingal D.
    APPLIED PHYSICS LETTERS, 2010, 96 (02)
  • [24] Quantum rules for planar boron nanoclusters
    Arvanitidis, Athanasios G.
    Truong Ba Tai
    Minh Tho Nguyen
    Ceulemans, Arnout
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) : 18311 - 18318
  • [25] Structural evolution, epitaxy, and sublimation of silver nanoclusters on TiO2 (110)
    Sivaramakrishnan, S.
    Tedjasaputra, A. P.
    Sato, K.
    Zuo, J. M.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (05)
  • [26] Polymeric tungsten carbide nanoclusters: structural evolution, ligand modulation, and assembled nanomaterials
    Li, Jun
    Huang, Hai-Cai
    Wang, Jing
    Zhao, Yang
    Chen, Jing
    Bu, Yu-Xiang
    Cheng, Shi-Bo
    NANOSCALE, 2019, 11 (42) : 19903 - 19911
  • [27] The structural evolution of boron carbide via ab initio calculations
    Saal, James E.
    Shang, Shunli
    Liu, Zi-Kui
    APPLIED PHYSICS LETTERS, 2007, 91 (23)
  • [28] Structural motifs in RNA
    Moore, PB
    ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 : 287 - 300
  • [29] Structural motifs of biomolecules
    Banavar, Jayanth R.
    Hoang, Trinh Xuan
    Maddocks, John H.
    Maritan, Amos
    Poletto, Chiaral
    Stasiak, Andrzej
    Trovato, Antonio
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (44) : 17283 - 17286
  • [30] Highly exposed NiFeOx nanoclusters supported on boron doped carbon nanotubes for electrocatalytic oxygen evolution reaction
    Liyang Lv
    Bing Tang
    Qianqian Ji
    Na Li
    Yao Wang
    Sihua Feng
    Hengli Duan
    Chao Wang
    Hao Tan
    Wensheng Yan
    Chinese Chemical Letters, 2023, 34 (03) : 238 - 242