Facile hydrothermal fabrication of In2O3/Fe2O3 as potential electrode material for supercapacitor

被引:0
|
作者
Rafeeq, Muhammad [1 ]
Ahmad, Sohail [2 ]
Sami, Abdus [3 ]
Khan, Komal Zaman [1 ]
Haidar, Zeshan [1 ]
Ahmed, Farooq [4 ]
Yasmeen, Ghazala [1 ]
Ahmed, Shakoor [1 ]
Bahajjaj, Aboud Ahmed Awadh [5 ]
机构
[1] Bahauddin Zakariya Univ Multan, Inst Chem Sci, Multan 60800, Pakistan
[2] Guizhou Univ Engn Sci, Sch Mech Engn, Guizhou 551700, Peoples R China
[3] Univ Punjab Lahore, Ctr Excellence Solid State Phys, Lahore, Pakistan
[4] Univ Engn & Technol Lahore, Dept Chem, Lahore, Pakistan
[5] King Saud Univ, Coll Sci, Dept Chem, Riyadh 11451, Saudi Arabia
关键词
Supercapacitor; Metal oxides; Indium oxide; IRON-OXIDE; ELECTROCHEMICAL PROPERTIES; PERFORMANCE; GRAPHENE; NANOCOMPOSITE; TRANSITION;
D O I
10.1016/j.electacta.2025.145963
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The limited cycle stability and poor electrochemical performance of electrode materials remain significant challenges for energy storage systems such as batteries and supercapacitors. To overcome these limitations, development of nanostructured materials with enhanced specific surface area and electrical conductivity is essential. In present study, a single-step hydrothermal process was used to fabricate an In2O3/Fe2O3 nano- composite for supercapacitor applications. Scanning electron microscopy (SEM) revealed rough hexagonal nanoparticles in prepared material. Cyclic voltammetry (CV) experiments demonstrated a specific capacitance (Csp) of 379.77 F g-1. The nanocomposite exhibited an impressive Csp of 1868.22 F g-1 at a current density (CD) of 2 A g-1, with energy and power densities of 58.29 Wh kg-1 and 474 kW kg-1, respectively, as determined by galvanostatic charge-discharge (GCD) analysis in a three-electrode configuration. In a two-electrode configuration, the material achieved a Csp of 1564.9 F g-1 at a CD of 2 A g-1, along with an energy density of 356.6 Wh kg-1 and a power density of 0.3375 kW kg-1. The smaller semicircle observed in electrochemical impedance spectroscopy (EIS) indicated improved electrical conductivity. The enhanced capacitance of the nanocomposite, attributed to efficient ion transfer and an expanded structure, highlights its potential for surface-dependent electrochemical applications. This study introduces a novel concept for designing advanced electrode materials for supercapacitors.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Effect of α-Fe2O3 on the conductance and gas-sensing properties of In2O3
    Ge, XT
    Liu, XQ
    ACTA PHYSICO-CHIMICA SINICA, 2001, 17 (10) : 887 - 891
  • [22] Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor
    Gao Wei
    Li Yufeng
    Zhao Jitao
    Zhang Zhe
    Tang Weiwei
    Wang Jun
    Wu Zhenyu
    Li Zhenyu
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2022, 38 (04) : 1097 - 1104
  • [23] In2O3 anchored Fe2O3 nanorod arrays for enhanced photoelectrochemical performance
    Wu, Liangpeng
    Ma, Shexia
    Li, Juan
    Li, Xinjun
    THIN SOLID FILMS, 2021, 724 (724)
  • [24] Excellent performance of gas sensor based on In2O3–Fe2O3 nanotubes
    刘丽
    李守春
    郭欣
    何越
    王连元
    Journal of Semiconductors, 2016, 37 (01) : 33 - 37
  • [25] Evolution of waste iron rust into α-Fe2O3/CNF and α-Fe2O3/PANI composites as an efficient positive electrode for sustainable hybrid supercapacitor
    Atram, Rounak R. L.
    Bhuse, Darpan, V
    Bhuse, Vijaykumar M.
    Atram, Ramdas G.
    Kondawar, Subhash B.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (10) : 13787 - 13802
  • [26] Evolution of waste iron rust into α-Fe2O3/CNF and α-Fe2O3/PANI composites as an efficient positive electrode for sustainable hybrid supercapacitor
    Rounak R. Atram
    Darpan V. Bhuse
    Vijaykumar M. Bhuse
    Ramdas G. Atram
    Subhash B. Kondawar
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 13787 - 13802
  • [27] Hydrothermal fabrication of various morphological α-Fe2O3 nanoparticles modified by surfactants
    Jing, ZH
    Wu, SH
    Zhang, SM
    Huang, WP
    MATERIALS RESEARCH BULLETIN, 2004, 39 (13) : 2057 - 2064
  • [28] Electrospun α-Fe2O3 nanostructures for supercapacitor applications
    Binitha, G.
    Soumya, M. S.
    Madhavan, Asha Anish
    Praveen, P.
    Balakrishnan, A.
    Subramanian, K. R. V.
    Reddy, M. V.
    Nair, Shantikumar V.
    Nair, A. Sreekumaran
    Sivakumar, N.
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (38) : 11698 - 11704
  • [29] Magnetoelectric ε-Fe2O3: DFT study of a potential candidate for electrode material in photoelectrochemical cells
    Ahamed, Imran
    Ulman, Kanchan
    Seriani, Nicola
    Gebauer, Ralph
    Kashyap, Arti
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (21):
  • [30] Comparative studies on MWCNTs, Fe2O3 and Fe2O3/MWCNTs thin films towards supercapacitor application
    Raut, Shrikant S.
    Sankapal, Babasaheb R.
    NEW JOURNAL OF CHEMISTRY, 2016, 40 (03) : 2619 - 2627