Homogeneous photoelectric reservoir computing system based on chalcogenide phase change materials

被引:0
|
作者
Zhao, Peng [1 ]
Yan, Senhao [1 ]
Xing, Ruoxuan [2 ]
Yao, Jiaping [1 ]
Ge, Xiang [1 ]
Li, Kai [1 ]
Cheng, Xiaomin [1 ]
Miao, Xiangshui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Integrated Circuits, Hubei Key Lab Adv Memories, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
来源
MATERIALS TODAY NANO | 2025年 / 29卷
关键词
Chalcogenide phase change materials; Synapse; Homogeneous system; Reservoir computing; Sign language recognition; CHANGE MEMORY; CRYSTALLIZATION; FILMS;
D O I
10.1016/j.mtnano.2025.100576
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A neuromorphic visual system integrating photoelectronic synapses to perform the in-sensor computing is triggering a revolution thanks to the reduction of latency and energy consumption. Phase change materials based on Ge-Sb-Te ternary alloy have become a strong candidate for neuromorphic computing due to its compatibility with complementary metal oxide semiconductor (CMOS). Hence, a homogeneous photoelectronic reservoir computing (RC) system based on chalcogenide phase change material is proposed in this work. The reservoir and readout layers are realized by the same material, and the sign language recognition is implemented by in-sensor computing and in-memory parallel computing. By doping N into Ge1Sb4Te7 (NGST), the conductance modulation linearity, symmetry and retention of the phase change electrical synapse are improved, making the NGST electrical synapse excellent for readout layer. Meanwhile, the nonlinear optical response characteristics and persistent photoconductivity (PPC) effect of amorphous-NGST (a-NGST) enable the a-NGST photo-synapses to form an ideal photoelectric reservoir. The system's sign language recognition accuracy can reach 99.58 %. With a random noise level of 15 %, the system's sign language recognition accuracy remains above 90 %. This homogeneous design for photoelectric RC system shows excellent process compatibility and high integration. Furthermore, due to the excellent retention characteristics of the NGST synaptic device in the readout layer, the system's sign language recognition accuracy remains 97.60 % after 106s. This work shows that the chalcogenide phase-change materials have great potential in in-sensor computing applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] In-Memory Computing Devices and Integrated Chips Based on Chalcogenide Phase Change Materials (Invited)
    Xu Kai
    Yun Yiting
    Zhang Jiaxin
    Li Xiang
    Wang Weiquan
    Wei Maoliang
    Lei Kunhao
    Li Junying
    Lin Hongtao
    ACTA OPTICA SINICA, 2024, 44 (15)
  • [2] Chalcogenide Phase Change Materials: An Electronic Perspective
    Champlain, James G.
    2017 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS (IMWS-AMP), 2017,
  • [3] Recent Advances on Neuromorphic Devices Based on Chalcogenide Phase-Change Materials
    Xu, Ming
    Mai, Xianliang
    Lin, Jun
    Zhang, Wei
    Li, Yi
    He, Yuhui
    Tong, Hao
    Hou, Xiang
    Zhou, Peng
    Miao, Xiangshui
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (50)
  • [4] Chalcogenide phase-change devices for neuromorphic photonic computing
    Brueckerhoff-Plueckelmann, Frank
    Feldmann, Johannes
    Wright, C. David
    Bhaskaran, Harish
    Pernice, Wolfram H. P.
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (15)
  • [5] Plasma Preparation of the Top-Quality Phase Change Materials Based on As-Se-Te Chalcogenide System
    Nezhdanov, Aleksey
    Mochalov, Leonid
    Usanov, Dmitry
    Kudryashov, Mikhail
    Logunov, Alexander
    Mashin, Aleksandr
    2018 20TH ANNIVERSARY INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2018,
  • [6] Endurance of chalcogenide optical phase change materials: a review
    MARTIN-MONIER, L. O. U. I. S.
    POPESCU, C. O. S. M. I. N. C. O. N. S. T. A. N. T. I. N.
    RANNO, L. U. I. G. I.
    MILLS, B. R. I. A. N.
    GEIGER, S. A. R. A. H.
    CALLAHAN, D. E. N. N. I. S.
    MOEBIUS, M. I. C. H. A. E. L.
    HU, J. U. E. J. U. N.
    OPTICAL MATERIALS EXPRESS, 2022, 12 (06) : 2145 - 2167
  • [7] Chalcogenide Phase-Change Materials: Past and Future
    Elliott, Stephen R.
    INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE, 2015, 6 (01) : 15 - 18
  • [8] Chaotic computing cell based on nanostructured phase-change materials
    Nevzorov, A. A.
    Burtsev, A. A.
    Kiselev, A. V.
    Mikhalevsky, V. A.
    Ionin, V. V.
    Eliseev, N. N.
    Lotin, A. A.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2024, 23 (06) : 1448 - 1454
  • [9] Tunable nanophotonics enabled by chalcogenide phase-change materials
    Abdollahramezani, Sajjad
    Hemmatyar, Omid
    Taghinejad, Hossein
    Krasnok, Alex
    Kiarashinejad, Yashar
    Zandehshahvar, Mohammadreza
    Alu, Andrea
    Adibi, Ali
    NANOPHOTONICS, 2020, 9 (05) : 1189 - 1241
  • [10] Terahertz Nanoimaging and Nanospectroscopy of Chalcogenide Phase-Change Materials
    Chen, Chao
    Chen, Shu
    Lobo, Ricardo P. S. M.
    Maciel-Escudero, Carlos
    Lewin, Martin
    Taubner, Thomas
    Xiong, Wei
    Xu, Ming
    Zhang, Xinliang
    Miao, Xiangshui
    Li, Peining
    Hillenbrand, Rainer
    ACS PHOTONICS, 2020, 7 (12): : 5499 - 5506