Chaotic computing cell based on nanostructured phase-change materials

被引:0
|
作者
Nevzorov, A. A. [1 ]
Burtsev, A. A. [1 ]
Kiselev, A. V. [1 ]
Mikhalevsky, V. A. [1 ]
Ionin, V. V. [1 ]
Eliseev, N. N. [1 ]
Lotin, A. A. [1 ]
机构
[1] Kurchatov Inst, Natl Res Ctr, Moscow 123098, Russia
关键词
Phase-change material; Nanoparticles; Computing cell; Chaotic structures;
D O I
10.1007/s10825-024-02221-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents and investigates a new architecture of a computational cell based on nanoparticles of the phase-change material Ge2Sb2Te5. Such a cell is a chaotic array of nanoparticles deposited between closely spaced electrical contacts. The state of such a structure is determined by the resistance of the nanoparticle array, which depends on the phase state of each particle of the material. Simulation results show that the proposed structure has a number of electrical states switching features that cannot be achieved using a thin film architecture. The proposed architecture allows for smoother and more controlled switching of the resistance by electrical pulses. Simulation of the evolution of the cell state using complex control actions showed that the proposed structure can behave as an artificial convolutional neuron with horizontal connections and also as a multi-level memory cell. In addition, the proposed design is technologically simple to achieve and inexpensive to manufacture.
引用
收藏
页码:1448 / 1454
页数:7
相关论文
共 50 条
  • [1] Photonic Convolution Engine based on Phase-Change Materials and Stochastic Computing
    Cardoso, Raphael
    Zrounba, Clement
    Abdalla, Mohab
    Jimenez, Paul
    Gomes, Mauricio
    Charbonnier, Benoit
    Pavanello, Fabio
    O'Connor, Ian
    Le Beux, Sebastien
    2023 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, ISVLSI, 2023, : 31 - 36
  • [2] Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials
    Zhu, Zhihua
    Evans, Philip G.
    Haglund, Richard F., Jr.
    Valentine, Jason G.
    NANO LETTERS, 2017, 17 (08) : 4881 - 4885
  • [3] All-photonic in-memory computing based on phase-change materials
    Rios, Carlos
    Youngblood, Nathan
    Cheng, Zengguang
    Le Gallo, Manuel
    Pernice, Wolfram H. P.
    Wright, C. David
    Sebastian, Abu
    Bhaskaran, Harish
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [4] Phase-change materials
    Air Liquide America Corp, South Plainfield, United States
    Heat Transfer Eng, 2 (72-74):
  • [5] Phase-change materials
    Fleury, AF
    HEAT TRANSFER ENGINEERING, 1996, 17 (02) : 72 - 74
  • [6] PHASE-CHANGE MATERIALS
    Kos, Zeljko
    TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2013, 7 (02): : 202 - 205
  • [7] Chaotic behavior in Casimir oscillators: A case study for phase-change materials
    Tajik, Fatemeh
    Sedighi, Mehdi
    Khorrami, Mohammad
    Masoudi, Amir Ali
    Palasantzas, George
    PHYSICAL REVIEW E, 2017, 96 (04)
  • [8] Phase-change materials based on amorphous equichalcogenides
    Golovchak, Roman
    Plummer, Jarres
    Kovalskiy, Andriy
    Holovchak, Yuriy
    Ignatova, Tetyana
    Trofe, Anthony
    Mahlovanyi, Bohdan
    Cebulski, Jozef
    Krzeminski, Piotr
    Shpotyuk, Yaroslav
    Boussard-Pledel, Catherine
    Bureau, Bruno
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [9] A Thermal Accumulator Based on Phase-Change Materials
    Bocharov, G. S.
    Vagin, A. O.
    Grigoriev, I. S.
    Dedov, A. V.
    Eletskii, A. V.
    Zakharenkov, A. V.
    Zverev, M. A.
    DOKLADY PHYSICS, 2022, 67 (06) : 169 - 172
  • [10] Tunable metasurfaces based on phase-change materials
    Yan, Wei
    Wang, Ji-Yong
    Qu, Yu-Rui
    Li, Qiang
    Qiu, Min
    Wuli Xuebao/Acta Physica Sinica, 2020, 69 (15):