LS-YOLO: A Lightweight Selective YOLOv8 Algorithm for UAV Aerial Photography

被引:0
|
作者
Pan, Wei [1 ]
Yang, Zhe [1 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
关键词
UAV; Small object detection; YOLOv8; Lightweight;
D O I
10.1007/978-981-97-8858-3_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection for unmanned aerial vehicles (UAV) aerial photography presents challenges such as tiny and densely distributed objects, and unbalanced categories. Furthermore, the hardware limitations of UAV restrict the scalability of models, leading to reduced accuracy. In response to these challenges, an enhanced YOLOv8m model which incorporates multiple lightweight strategies is proposed. Specifically, GDC (Ghost Dynamic Conv) is introduced into the backbone network to improve feature extraction, and more features are generated with fewer parameters to achieve efficient feature extraction. Additionally, the feature fusion mechanism has been optimized, and the LS-FPN-PAN feature fusion mechanism has been devised to globally reduce the number of feature channels and amount of calculation. Through adaptive feature selection, the channel weight was given to achieve better fusion. Furthermore, a lightweight selective detection head was proposed, and shared convolution was employed to facilitate the learning of target features by three detection heads. The WMPDIoU loss function was designed to reduce the penalty caused by the geometric factors of the detection box of tiny objects. The cost-free approach of substituting NMS function and implementing knowledge distillation is employed to enhance the model's performance. The experimental results show that the model size and parameter number of the improved model are only 42.1% and 55.1% of the original model, but the performance is considerably improved. On the Visdrone2019 test dataset, P, mAP@0.5, mAP@0.5:0.95 are increased by 12.9%, 26.5% and 38.8% respectively, indicating a successful realization of lightweight design with enhanced performance capabilities suitable for effective application in object detection tasks on UAV platforms.
引用
收藏
页码:186 / 200
页数:15
相关论文
共 50 条
  • [31] M-YOLOv8s: An improved small target detection algorithm for UAV aerial photography☆
    Duan, Siyao
    Wang, Ting
    Li, Tao
    Yang, Wankou
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 104
  • [32] GMC-YOLO: A Face Detection Algorithm Based on Enhanced YOLOv8
    Peng, Chongle
    Sang, Qingbing
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 123 - 126
  • [33] YOLO-BS: a traffic sign detection algorithm based on YOLOv8
    Zhang, Hong
    Liang, Mingyin
    Wang, Yufeng
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [34] FF-YOLO: Fashion Fabric Detection Algorithm Based on YOLOv8
    Chen, Caixia
    IEEE ACCESS, 2025, 13 : 2298 - 2312
  • [35] Small Target Detection Algorithm for UAV Aerial Photography Based on Improved YOLO V8n
    Li, Xiaolin
    Bao, Yifei
    2024 6TH INTERNATIONAL CONFERENCE ON DATA-DRIVEN OPTIMIZATION OF COMPLEX SYSTEMS, DOCS 2024, 2024, : 870 - 875
  • [36] Lightweight insulator defect detection algorithm based on improved YOLOv8
    Tang, Mingyue
    Wu, Hang
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 197 - 201
  • [37] A lightweight rice pest detection algorithm based on improved YOLOv8
    Zheng, Yong
    Zheng, Weiheng
    Du, Xia
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [38] PV-YOLO: A lightweight pedestrian and vehicle detection model based on improved YOLOv8
    Liu, Yuhang
    Huang, Zhenghua
    Song, Qiong
    Bai, Kun
    DIGITAL SIGNAL PROCESSING, 2025, 156
  • [39] RLE-YOLO: A Lightweight and Multiscale SAR Ship Detection Based on Improved YOLOv8
    Xu, Yifan
    Xue, Xiaorong
    Li, Chuanlu
    Zhao, Siyue
    Xu, Xingbiao
    Zeng, Caijia
    IEEE ACCESS, 2025, 13 : 46584 - 46600
  • [40] Target Detection Algorithm for UAV Images Based on Improved YOLOv8
    改进 YOLOv8 的无人机航拍图像目标检测算法
    Liang, Yan (liangyan@cqupt.edu.cn), 2025, 61 (01) : 121 - 130