Intrinsic Image Diffusion for Indoor Single-view Material Estimation

被引:1
|
作者
Kocsis, Peter [1 ]
Sitzmann, Vincent [2 ]
Niessner, Matthias [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] MIT, EECS, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/CVPR52733.2024.00497
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present Intrinsic Image Diffusion, a generative model for appearance decomposition of indoor scenes. Given a single input view, we sample multiple possible material explanations represented as albedo, roughness, and metallic maps. Appearance decomposition poses a considerable challenge in computer vision due to the inherent ambiguity between lighting and material properties and the lack of real datasets. To address this issue, we advocate for a probabilistic formulation, where instead of attempting to directly predict the true material properties, we employ a conditional generative model to sample from the solution space. Furthermore, we show that utilizing the strong learned prior of recent diffusion models trained on large-scale real-world images can be adapted to material estimation and highly improves the generalization to real images. Our method produces significantly sharper, more consistent, and more detailed materials, outperforming state-of-the-art methods by 1.5dB on PSNR and by 45% better FID score on albedo prediction. We demonstrate the effectiveness of our approach through experiments on both synthetic and real-world datasets.
引用
收藏
页码:5198 / 5208
页数:11
相关论文
共 50 条
  • [41] 3D Reconstruction from Single-View Image Using Feature Selection
    Wang, Bo
    Yao, Hongxun
    IMAGE AND GRAPHICS (ICIG 2021), PT III, 2021, 12890 : 143 - 152
  • [42] Interactive 3D Visualization of a Single-View X-Ray Image
    Wieczorek, Matthias
    Aichert, Andre
    Fallavollita, Pascal
    Kutter, Oliver
    Ahmadi, Ahmad
    Wang, Lejing
    Navab, Nassir
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI 2011, PT I, 2011, 6891 : 73 - +
  • [43] Performance comparison of single-view digital breast tomosynthesis plus single-view digital mammography with two-view digital mammography
    Gisella Gennaro
    R. Edward Hendrick
    Patricia Ruppel
    Roberta Chersevani
    Cosimo di Maggio
    Manuela La Grassa
    Luigi Pescarini
    Ilaria Polico
    Alessandro Proietti
    Enrica Baldan
    Elisabetta Bezzon
    Fabio Pomerri
    Pier Carlo Muzzio
    European Radiology, 2013, 23 : 664 - 672
  • [44] Performance comparison of single-view digital breast tomosynthesis plus single-view digital mammography with two-view digital mammography
    Gennaro, Gisella
    Hendrick, R. Edward
    Ruppel, Patricia
    Chersevani, Roberta
    di Maggio, Cosimo
    La Grassa, Manuela
    Pescarini, Luigi
    Polico, Ilaria
    Proietti, Alessandro
    Baldan, Enrica
    Bezzon, Elisabetta
    Pomerri, Fabio
    Muzzio, Pier Carlo
    EUROPEAN RADIOLOGY, 2013, 23 (03) : 664 - 672
  • [45] Image to Icosahedral Projection for SO(3) Object Reasoning from Single-View Images
    Klee, David M.
    Biza, Ondrej
    Platt, Robert
    Walters, Robin
    NEURIPS WORKSHOP ON SYMMETRY AND GEOMETRY IN NEURAL REPRESENTATIONS, VOL 197, 2022, 197 : 63 - 80
  • [46] Multiview Feature Selection for Single-View Classification
    Komeili, Majid
    Armanfard, Narges
    Hatzinakos, Dimitrios
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (10) : 3573 - 3586
  • [47] Multi-view kernel machine on single-view data
    Wang, Zhe
    Chen, Songcan
    NEUROCOMPUTING, 2009, 72 (10-12) : 2444 - 2449
  • [48] Robust Single-View Geometry and Motion Reconstruction
    Li, Hao
    Adams, Bart
    Guibas, Leonidas J.
    Pauly, Mark
    ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (05): : 1 - 10
  • [49] Indoor Scene Layout Estimation from a Single Image
    Lin, Hung Jin
    Huang, Sheng-Wei
    Lai, Shang-Hong
    Chiang, Chen-Kuo
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 842 - 847
  • [50] Multi-View Depth Estimation by Using Adaptive Point Graph to Fuse Single-View Depth Probabilities
    Wang, Ke
    Liu, Chuhao
    Liu, Zhanwen
    Xiao, Fangwei
    An, Yisheng
    Zhao, Xiangmo
    Shen, Shaojie
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (07): : 6400 - 6407