Jointly Learning From Unimodal and Multimodal-Rated Labels in Audio-Visual Emotion Recognition

被引:0
|
作者
Goncalves, Lucas [1 ]
Chou, Huang-Cheng [2 ]
Salman, Ali N. [1 ]
Lee, Chi-Chun [2 ]
Busso, Carlos [1 ,3 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75080 USA
[2] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 300, Taiwan
[3] Carnegie Mellon Univ, Language Technol Inst, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Emotion recognition; Training; Visualization; Annotations; Face recognition; Speech recognition; Computational modeling; Acoustics; Noise; Calibration; Multimodal learning; emotion recognition; audio-visual sentiment analysis; affective computing; emotion analysis; multi-label classification;
D O I
10.1109/OJSP.2025.3530274
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Audio-visual emotion recognition (AVER) has been an important research area in human-computer interaction (HCI). Traditionally, audio-visual emotional datasets and corresponding models derive their ground truths from annotations obtained by raters after watching the audio-visual stimuli. This conventional method, however, neglects the nuanced human perception of emotional states, which varies when annotations are made under different emotional stimuli conditions-whether through unimodal or multimodal stimuli. This study investigates the potential for enhanced AVER system performance by integrating diverse levels of annotation stimuli, reflective of varying perceptual evaluations. We propose a two-stage training method to train models with the labels elicited by audio-only, face-only, and audio-visual stimuli. Our approach utilizes different levels of annotation stimuli according to which modality is present within different layers of the model, effectively modeling annotation at the unimodal and multi-modal levels to capture the full scope of emotion perception across unimodal and multimodal contexts. We conduct the experiments and evaluate the models on the CREMA-D emotion database. The proposed methods achieved the best performances in macro-/weighted-F1 scores. Additionally, we measure the model calibration, performance bias, and fairness metrics considering the age, gender, and race of the AVER systems.
引用
收藏
页码:165 / 174
页数:10
相关论文
共 50 条
  • [1] Audio-Visual Learning for Multimodal Emotion Recognition
    Fan, Siyu
    Jing, Jianan
    Wang, Chongwen
    SYMMETRY-BASEL, 2025, 17 (03):
  • [2] Metric Learning-Based Multimodal Audio-Visual Emotion Recognition
    Ghaleb, Esam
    Popa, Mirela
    Asteriadis, Stylianos
    IEEE MULTIMEDIA, 2020, 27 (01) : 37 - 48
  • [3] Leveraging Unimodal Self-Supervised Learning for Multimodal Audio-Visual Speech Recognition
    Pan, Xichen
    Chen, Peiyu
    Gong, Yichen
    Zhou, Helong
    Wang, Xinbing
    Lin, Zhouhan
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 4491 - 4503
  • [4] To Join or Not to Join: A Study on the Impact of Joint or Unimodal Representation Learning on Audio-Visual Emotion Recognition
    Hajavi, Amirhossein
    Singh, Harmanpreet
    Fashandi, Homa
    2024 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN 2024, 2024,
  • [5] Multimodal and Temporal Perception of Audio-visual Cues for Emotion Recognition
    Ghaleb, Esam
    Popa, Mirela
    Asteriadis, Stylianos
    2019 8TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII), 2019,
  • [6] Multimodal Emotion Recognition using Physiological and Audio-Visual Features
    Matsuda, Yuki
    Fedotov, Dmitrii
    Takahashi, Yuta
    Arakawa, Yutaka
    Yasumo, Keiichi
    Minker, Wolfgang
    PROCEEDINGS OF THE 2018 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2018 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS (UBICOMP/ISWC'18 ADJUNCT), 2018, : 946 - 951
  • [7] DEEP MULTIMODAL LEARNING FOR AUDIO-VISUAL SPEECH RECOGNITION
    Mroueh, Youssef
    Marcheret, Etienne
    Goel, Vaibhava
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 2130 - 2134
  • [8] Multimodal Deep Convolutional Neural Network for Audio-Visual Emotion Recognition
    Zhang, Shiqing
    Zhang, Shiliang
    Huang, Tiejun
    Gao, Wen
    ICMR'16: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2016, : 281 - 284
  • [9] Audio-Visual Fusion Network Based on Conformer for Multimodal Emotion Recognition
    Guo, Peini
    Chen, Zhengyan
    Li, Yidi
    Liu, Hong
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT II, 2022, 13605 : 315 - 326
  • [10] Audio-visual spontaneous emotion recognition
    Zeng, Zhihong
    Hu, Yuxiao
    Roisman, Glenn I.
    Wen, Zhen
    Fu, Yun
    Huang, Thomas S.
    ARTIFICIAL INTELLIGENCE FOR HUMAN COMPUTING, 2007, 4451 : 72 - +