Multimodal Emotion Recognition using Physiological and Audio-Visual Features

被引:7
|
作者
Matsuda, Yuki [1 ,3 ]
Fedotov, Dmitrii [2 ,4 ]
Takahashi, Yuta [1 ]
Arakawa, Yutaka [1 ,5 ]
Yasumo, Keiichi [1 ,6 ]
Minker, Wolfgang [2 ]
机构
[1] Nara Inst Sci & Technol, 8916-5 Takayama, Nara, Japan
[2] Ulm Univ, Albert Einstein Allee 43, Ulm, Germany
[3] Japan Soc Promot Sci, Tokyo, Japan
[4] ITMO Univ, St Petersburg, Russia
[5] JST Presto, Tokyo, Japan
[6] RIKEN, Ctr Adv Intelligence Project AIP, Tokyo, Japan
关键词
Ubiquitous computing; emotion recognition; wearable computing; dialogue systems; smart tourism; smart cities; DATABASE; SPEECH; BODY;
D O I
10.1145/3267305.3267687
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To design more context-aware systems for smart environments, especially smart cities, the psychological user status such as emotion should be considered in addition to environmental information. In this study, we focus on the tourism domain as a typical use case, and propose a multimodal tourist emotion recognition method during the sightseeing. We employ behavioural cues (eye and head/ body movements) and audio-visual features to recognise emotion. As a result of real-world experiments with tourists, we achieved up to 0.71 of average recall score in 3-class emotion recognition task with feature level fusion.
引用
收藏
页码:946 / 951
页数:6
相关论文
共 50 条
  • [1] Multimodal and Temporal Perception of Audio-visual Cues for Emotion Recognition
    Ghaleb, Esam
    Popa, Mirela
    Asteriadis, Stylianos
    [J]. 2019 8TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII), 2019,
  • [2] Audio-Visual Emotion Recognition System Using Multi-Modal Features
    Handa, Anand
    Agarwal, Rashi
    Kohli, Narendra
    [J]. INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2021, 15 (04)
  • [3] Multimodal Deep Convolutional Neural Network for Audio-Visual Emotion Recognition
    Zhang, Shiqing
    Zhang, Shiliang
    Huang, Tiejun
    Gao, Wen
    [J]. ICMR'16: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2016, : 281 - 284
  • [4] Metric Learning-Based Multimodal Audio-Visual Emotion Recognition
    Ghaleb, Esam
    Popa, Mirela
    Asteriadis, Stylianos
    [J]. IEEE MULTIMEDIA, 2020, 27 (01) : 37 - 48
  • [5] Audio-Visual Fusion Network Based on Conformer for Multimodal Emotion Recognition
    Guo, Peini
    Chen, Zhengyan
    Li, Yidi
    Liu, Hong
    [J]. ARTIFICIAL INTELLIGENCE, CICAI 2022, PT II, 2022, 13605 : 315 - 326
  • [6] AUDIO-VISUAL EMOTION RECOGNITION USING BOLTZMANN ZIPPERS
    Lu, Kun
    Jia, Yunde
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 2589 - 2592
  • [7] Audio-visual spontaneous emotion recognition
    Zeng, Zhihong
    Hu, Yuxiao
    Roisman, Glenn I.
    Wen, Zhen
    Fu, Yun
    Huang, Thomas S.
    [J]. ARTIFICIAL INTELLIGENCE FOR HUMAN COMPUTING, 2007, 4451 : 72 - +
  • [8] Data Augmentation for Audio-Visual Emotion Recognition with an Efficient Multimodal Conditional GAN
    Ma, Fei
    Li, Yang
    Ni, Shiguang
    Huang, Shao-Lun
    Zhang, Lin
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [9] Multimodal Learning Using 3D Audio-Visual Data or Audio-Visual Speech Recognition
    Su, Rongfeng
    Wang, Lan
    Liu, Xunying
    [J]. 2017 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2017, : 40 - 43
  • [10] DISENTANGLEMENT FOR AUDIO-VISUAL EMOTION RECOGNITION USING MULTITASK SETUP
    Peri, Raghuveer
    Parthasarathy, Srinivas
    Bradshaw, Charles
    Sundaram, Shiva
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 6344 - 6348