A new Weibull distribution for modeling complex biomedical data

被引:1
|
作者
Suleiman, Ahmad Abubakar [1 ,2 ]
Daud, Hanita [1 ]
Ishaq, Aliyu Ismail [3 ]
Kayid, Mohamed [4 ]
Sokkalingam, Rajalingam [1 ]
Hamed, Yaman [1 ]
Othman, Mahmod [5 ]
Nagarjuna, Vasili B. V. [6 ]
Elgarhy, Mohammed [7 ,8 ]
机构
[1] Univ Teknol PETRONAS, Fundamental & Appl Sci Dept, Seri Iskandar 32610, Malaysia
[2] Aliko Dangote Univ Sci & Technol, Dept Stat, Wudil 713281, Nigeria
[3] Ahmadu Bello Univ, Dept Stat, Zaria 810107, Nigeria
[4] King Saud Univ, Coll Sci, Dept Stat & Operat Res, POB 2455, Riyadh 11451, Saudi Arabia
[5] Univ Islam Indragiri, Dept Informat Syst, Riau 29212, Indonesia
[6] VIT AP Univ, Dept Math, Amaravati 522237, India
[7] Beni Suef Univ, Fac Sci, Math & Comp Sci Dept, Bani Suwayf 62521, Egypt
[8] Higher Inst Adm Sci, Dept Basic Sci, Belbeis, Alsharkia, Egypt
关键词
Weibull distribution; Entropy; Maximum likelihood estimation; Skewness; Biomedical data; Infectious disease; H FAMILY; REGRESSION;
D O I
10.1016/j.jrras.2024.101190
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Classical models like the Weibull distribution often struggle to capture the high variability and complexity inherent in biomedical data. To address these limitations, we introduced the odd beta prime-Weibull (OBPWeibull) distribution, derived from the odd beta prime class, which provides enhanced flexibility and greater kurtosis than the traditional Weibull model. The OBP-Weibull model is designed to accommodate a range of distribution shapes, from skewed (both right and left) to symmetric and J-shaped, as well as various hazard rate patterns, including increasing, bathtub, and decreasing. These features make it particularly adaptable for statistical modeling in biomedical research. Key properties of the OBP-Weibull distribution are outlined, with parameter estimation conducted using the least squares, weighted least squares, and maximum likelihood estimation methods. Monte Carlo simulations confirm the model's robustness across diverse scenarios. Using the OBP-Weibull model, we analyze three real-world biomedical datasets: COVID-19 mortality data, pathological clinic data, and remission times in acute bone cancer patients. Results show that the OBP-Weibull model outperforms classical models in capturing data complexities. This study establishes the OBP-Weibull distribution as a valuable tool for complex data modeling in biomedical research, providing essential insights and applications.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] The Role of the Weibull Distribution in Internet Traffic Modeling
    Arfeen, Muhammad Asad
    Pawlikowski, K.
    McNickle, D.
    Willig, A.
    2013 25TH INTERNATIONAL TELETRAFFIC CONGRESS (ITC), 2013,
  • [42] The Maxwell–Weibull Distribution in Modeling Lifetime Datasets
    Ishaq A.I.
    Abiodun A.A.
    Ishaq, Aliyu Ismail (binishaq05@gmail.com), 1600, Springer Science and Business Media Deutschland GmbH (07): : 639 - 662
  • [43] A generalized modified Weibull distribution for lifetime modeling
    Carrasco, Jalmar M. F.
    Ortega, Edwin M. M.
    Cordeiro, Gauss M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 53 (02) : 450 - 462
  • [44] A New Modification of the Weibull Distribution: Model, Theory, and Analyzing Engineering Data Sets
    Alshanbari, Huda M.
    Ahmad, Zubair
    El-Bagoury, Abd Al-Aziz Hosni
    Odhah, Omalsad Hamood
    Rao, Gadde Srinivasa
    SYMMETRY-BASEL, 2024, 16 (05):
  • [45] A New Version of Weighted Weibull Distribution: Modelling to COVID-19 Data
    Alahmadi, Amani Abdullah
    Alqawba, Mohammed
    Almutiry, Waleed
    Shawki, A. W.
    Alrajhi, Sharifah
    Al-Marzouki, Sanaa
    Elgarhy, Mohammed
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022
  • [46] A New Generalized Weighted Weibull Distribution
    Abbas, Salman
    Ozal, Gamze
    Shahbaz, Saman Hanif
    Shahbaz, Muhammad Qaiser
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2019, 15 (01) : 161 - 177
  • [47] A New Discrete Extended Weibull Distribution
    Jia, Jun-Mei
    Yan, Zai-Zai
    Peng, Xiu-Yun
    IEEE ACCESS, 2019, 7 : 175474 - 175486
  • [48] New statistical inference for the Weibull distribution
    Zhao, Xu
    Cheng, Weibu
    Zhang, Yang
    Zhang, Qingnan
    Yang, Zhenhai
    QUANTITATIVE METHODS FOR PSYCHOLOGY, 2015, 11 (03): : 139 - 147
  • [49] A New Weibull-Pareto Distribution
    Aljarrah, Mohammad A.
    Famoye, Felix
    Lee, Carl
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (19) : 4077 - 4095
  • [50] A New Discrete Modified Weibull Distribution
    Almalki, Saad J.
    Nadarajah, Saralees
    IEEE TRANSACTIONS ON RELIABILITY, 2014, 63 (01) : 68 - 80