Entanglement estimation of Werner states with a quantum extreme learning machine

被引:0
|
作者
Assil, Hajar [1 ]
El Allati, Abderrahim [1 ,2 ]
Giorgi, Gian Luca [3 ]
机构
[1] Abdelmalek Essaadi Univ, Fac Sci & Tech Al Hoceima, Lab R&D Engn Sci, Tetouan, Morocco
[2] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[3] Campus Univ Illes Balears, Inst Cross Disciplinary Phys & Complex Syst, UIB CSIC, Palma De Mallorca 07122, Spain
关键词
D O I
10.1103/PhysRevA.111.022412
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum extreme learning machines (QELMs) have emerged as a potent tool for various quantum information processing tasks. We present a QELM protocol for estimating the amount of entanglement in Werner states. The protocol requires the generation of a sequence of random Werner states, which are then combined with a reservoir state and evolved using an Ising Hamiltonian. A set of observables based on the Bloch basis is constructed and employed to train the system to recognize unseen features. To assess the protocol's robustness, noise is introduced into the input states, and the system's performance under these noisy conditions is analyzed. Additionally, the influence of the magnetic-field parameter within the Ising Hamiltonian on the estimation accuracy is investigated.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Generating extreme quantum scattering in graphene with machine learning
    Han, Chen-Di
    Lai, Ying-Cheng
    PHYSICAL REVIEW B, 2022, 106 (21)
  • [22] Direct entanglement detection of quantum systems using machine learning
    Huang, Yulei
    Che, Liangyu
    Wei, Chao
    Xu, Feng
    Nie, Xinfang
    Li, Jun
    Lu, Dawei
    Xin, Tao
    NPJ QUANTUM INFORMATION, 2025, 11 (01)
  • [23] Generation of Werner states and preservation of entanglement in a noisy environment
    Jakóbczyk, L
    Jamróz, A
    PHYSICS LETTERS A, 2005, 347 (4-6) : 180 - 190
  • [25] Concurrence-based entanglement measure for Werner states
    Chen, Kai
    Albeverio, Sergio
    Fei, Shao-Ming
    REPORTS ON MATHEMATICAL PHYSICS, 2006, 58 (03) : 325 - 334
  • [26] Quantifying entanglement of two-qubit Werner states
    Czerwinski, Artur
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2021, 73 (08)
  • [27] Quantifying entanglement of two-qubit Werner states
    Artur Czerwinski
    Communications in Theoretical Physics, 2021, 73 (08) : 77 - 83
  • [28] Experimental pairwise entanglement estimation for an N-qubit systemA machine learning approach for programming quantum hardware
    Nathan L. Thompson
    N. H. Nguyen
    E. C. Behrman
    James E. Steck
    Quantum Information Processing, 2020, 19
  • [29] Experimental pairwise entanglement estimation for an N-qubit system: A machine learning approach for programming quantum hardware
    Thompson, Nathan L.
    Nguyen, N. H.
    Behrman, E. C.
    Steck, James E.
    QUANTUM INFORMATION PROCESSING, 2020, 19 (11)
  • [30] Machine learning assisted quantum state estimation
    Lohani, Sanjaya
    Kirby, Brian T.
    Brodsky, Michael
    Danaci, Onur
    Glasser, Ryan T.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (03):