Aspect-based Sentiment Analysis with Opinion Tree Generation

被引:0
|
作者
Bao, Xiaoyi [1 ]
Wang Zhongqing [1 ]
Jiang, Xiaotong [1 ]
Xiao, Rong [2 ]
Li, Shoushan [1 ]
机构
[1] Soochow Univ, Nat Language Proc Lab, Suzhou, Peoples R China
[2] Alibaba Grp, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing studies usually extract the sentiment elements by decomposing the complex structure prediction task into multiple subtasks. Despite their effectiveness, these methods ignore the semantic structure in ABSA problems and require extensive task-specific designs. In this study, we introduce a new Opinion Tree Generation model, which aims to jointly detect all sentiment elements in a tree. The opinion tree can reveal a more comprehensive and complete aspect-level sentiment structure. Furthermore, we employ a pre-trained model to integrate both syntax and semantic features for opinion tree generation. On one hand, a pre-trained model with large-scale unlabeled data is important for the tree generation model. On the other hand, the syntax and semantic features are very effective for forming the opinion tree structure. Extensive experiments show the superiority of our proposed method. The results also validate the tree structure is effective to generate sentimental elements.
引用
收藏
页码:4044 / 4050
页数:7
相关论文
共 50 条
  • [21] Datasets for Aspect-Based Sentiment Analysis in French
    Apidianaki, Marianna
    Tannier, Xavier
    Richart, Cecile
    LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2016, : 1122 - 1126
  • [22] Data augmentation for aspect-based sentiment analysis
    Guangmin Li
    Hui Wang
    Yi Ding
    Kangan Zhou
    Xiaowei Yan
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 125 - 133
  • [23] A Survey on Multimodal Aspect-Based Sentiment Analysis
    Zhao, Hua
    Yang, Manyu
    Bai, Xueyang
    Liu, Han
    IEEE ACCESS, 2024, 12 : 12039 - 12052
  • [24] Aspect-Based Sentiment Analysis Approach with CNN
    Mulyo, Budi M.
    Widyantoro, Dwi H.
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS (EECSI 2018), 2018, : 142 - 147
  • [25] Aspect-based sentiment analysis of mobile reviews
    Gupta, Vedika
    Singh, Vivek Kumar
    Mukhija, Pankaj
    Ghose, Udayan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (05) : 4721 - 4730
  • [26] A corpus for aspect-based sentiment analysis in Vietnamese
    Nguyen, Minh-Hao
    Nguyen, Tri Minh
    Thin, Dang Van
    Nguyen, Ngan Luu-Thuy
    PROCEEDINGS OF 2019 11TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2019), 2019, : 317 - 321
  • [27] Towards Generative Aspect-Based Sentiment Analysis
    Zhang, Wenxuan
    Li, Xin
    Deng, Yang
    Bing, Lidong
    Lam, Wai
    ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 2, 2021, : 504 - 510
  • [28] Aspect-Based Sentiment Analysis for User Reviews
    Du, Jinyang
    Zhang, Yin
    Ma, Xiao
    Wen, Haoyu
    Fortino, Giancarlo
    COGNITIVE COMPUTATION, 2021, 13 (05) : 1114 - 1127
  • [29] DRGCN Multitasking for Aspect-Based Sentiment Analysis
    Du, Mengyang
    Wang, Hongbin
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2025, 29 (02) : 268 - 276
  • [30] A Lexicon Generation Method For Aspect-Based Opinion Mining
    Mowlaei, Mohammad Erfan
    Abadeh, Mohammad Saniee
    Keshavarz, Hamidreza
    2018 IEEE 22ND INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS (INES 2018), 2018, : 107 - 112