The Laser Guide Star System for the Giant Magellan Telescope Laser Tomography Adaptive Optics

被引:0
|
作者
Rey, Noelia Martinez [1 ]
Hellemeier, Joschua [1 ]
Benhizia, Hana [1 ]
Blundell, Mark [1 ]
Chandler, David [1 ]
Cranney, Jesse [1 ]
Delgado, Angela Hernandez [1 ]
McGinness, Grace [1 ]
Ogane, Hajime [1 ]
Rheinberger, Rachael [1 ]
Travouillon, Tony [1 ]
Vaughn, Israel [1 ]
Demers, Richard [2 ]
Bouchez, Antonin [3 ]
Van Dam, Marcos [4 ]
D'Orgeville, Celine [1 ]
机构
[1] Australian Natl Univ, Adv Instrumentat & Technol Ctr, Res Sch Astron & Astrophys, Mt Stromlo Observ, Cotter Rd, Weston, ACT 2611, Australia
[2] Giant Magellan Telescope, Pasadena, CA 91101 USA
[3] WM Keck Observ, Waimea, HI 96743 USA
[4] Flat Wavefronts, Christchurch 8022, New Zealand
来源
ADAPTIVE OPTICS SYSTEMS IX | 2024年 / 13097卷
关键词
GMT; Laser Tomography Adaptive Optics; Laser Guide Star System;
D O I
10.1117/12.3019822
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Laser Tomography Adaptive Optics (LTAO) system for the Giant Magellan Telescope (GMT) will be the first laser guide star adaptive optics (LGS AO) wavefront control for the GMT, aimed at pushing the boundaries of astronomical observations beyond the limits of natural guide star (NGS) operations. The Australian National University is leading the design of some of the largest work packages in the GMT LTAO project, including the GMTIFS on-instrument wavefront sensor, LTAO LGS wavefront sensors, and the Laser Guide Star System (LGSS). Central to the LTAO system is the Laser Guide Star Subsystem (LGSS), responsible for creating a Laser Guide Star (LGS) asterism adjustable between 25-60 arcsec and centred on the science target. The LGSS comprises six Laser Guide Star Units (LGSU), each emitting a laser beam with precise spectro-temporal and spatial characteristics. The LGSU includes a Laser System, a Beam Conditioning and Diagnostic System (BCDS), a Laser Launch Telescope (LLT), and a LGS Unit Control System (LGSU CS). These components collectively ensure accurate pointing and focusing of the laser beam on the sky. This paper provides a comprehensive update on the re-assessment and redesign of the LGSS for the GMT, a collaborative effort reignited at the Australian National University after a ten-year hiatus in design work. The LGSS design is ready to re-attain the Preliminary Design level, after integrating interface changes that have evolved at the telescope since the Preliminary Design Review took place in 2013. In order to take advantage of advances made in the field over the past 10 years, the study investigates the feasibility of a shared launch for the GMT LTAO system and also re-evaluates the number of lasers required to generate the 6 LGS asterism.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] LASER GUIDE STAR ADAPTIVE OPTICS ON THE 1.5 METER TELESCOPE AT THE STARFIRE OPTICAL-RANGE
    FUGATE, RQ
    VERY HIGH ANGULAR RESOLUTION IMAGING, 1994, (158): : 293 - 295
  • [32] No Laser Guide Stars for adaptive optics in giant telescopes?
    Ragazzoni, R
    ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1999, 136 (01): : 205 - 209
  • [33] Current status of the laser guide star adaptive optic system for Subaru Telescope
    Hayano, Yutaka
    Takami, Hideki
    Guyon, Olivier
    Oya, Shin
    Hattori, Masayuki
    Saito, Yoshihiko
    Watanabe, Makoto
    Murakami, Naoshi
    Minowa, Yosuke
    Ito, Meguru
    Colley, Stephen
    Eldred, Michael
    Golota, Taras
    Dinkins, Matthew
    Kashikawa, Nobunari
    Iye, Masanori
    ADAPTIVE OPTICS SYSTEMS, PTS 1-3, 2008, 7015
  • [34] The Performance of the Robo-AO Laser Guide Star Adaptive Optics System at the Kitt Peak 2.1 m Telescope
    Jensen-Clem, Rebecca
    Duev, Dmitry A.
    Riddle, Reed
    Salama, Maissa
    Baranec, Christoph
    Law, Nicholas M.
    Kulkarni, S. R.
    Ramprakash, A. N.
    ASTRONOMICAL JOURNAL, 2018, 155 (01):
  • [35] Improved performance of the laser guide star adaptive optics system at Lick Observatory
    Olivier, SS
    Gavel, DT
    Friedman, HW
    Max, CE
    An, JR
    Avicola, K
    Bauman, BJ
    Brase, JM
    Campbell, EW
    Carrano, C
    Cooke, JB
    Freeze, GJ
    Gates, EL
    Kanz, VK
    Kuklo, TC
    Macintosh, BA
    Newman, MJ
    Pierce, EL
    Waltjen, KE
    Watson, JA
    ADAPTIVE OPTICS SYSTEMS AND TECHNOLOGY, 1999, 3762 : 2 - 7
  • [36] Simulation of a Laser Tomography Adaptive Optics with Rayleigh Laser Guide Stars for the Satellite Imaging System
    Ahn, Kyohoon
    Lee, Sung-Hun
    Park, In-Kyu
    Yang, Hwan-Seok
    CURRENT OPTICS AND PHOTONICS, 2021, 5 (02) : 101 - 113
  • [37] Progress report on sodium laser monitoring for laser guide star adaptive optics
    Michaille, L
    Dainty, JC
    Quartel, J
    Wooder, NJ
    Gregory, T
    NEW ASTRONOMY REVIEWS, 2001, 45 (1-2) : 69 - 72
  • [38] The performance of the laser guide star system for the Subaru Telescope
    Saito, Yoshihiko
    Hayano, Yutaka
    Ito, Meguru
    Minowa, Yosuke
    Egner, Sebastian
    Oya, Shin
    Watanabe, Makoto
    Hattori, Masayuki
    Garrel, Vincent
    Akagawa, Kazuyuki
    Guyon, Olivier
    Colley, Stephen
    Golota, Taras
    Saito, Norihito
    Takazawa, Akira
    Ito, Mayumi
    Takami, Hideki
    Wada, Satoshi
    Iye, Masanori
    ADAPTIVE OPTICS SYSTEMS II, 2010, 7736
  • [39] Implementation of a laser traffic control system supporting laser guide star adaptive optics on Mauna Kea
    Summers, D
    Gregory, B
    Stomski, P
    Brighton, A
    Wainscoat, R
    Wizinowich, P
    Gaessler, W
    Sebag, J
    Boyer, C
    Vermeulen, T
    Denault, T
    Simons, D
    Takami, H
    Veillet, C
    ADAPTIVE OPTICAL SYSTEM TECHNOLOGIES II, PTS 1 AND 2, 2003, 4839 : 440 - 451
  • [40] Design of the laser beam transfer system for the new Gemini North adaptive optics laser guide star
    Schneider, Thomas
    Marin, Eduardo
    Cavedoni, Charles
    Carr, Heather
    Ebbers, Angelic
    Kang, Stacy
    Karewicz, Stan
    Tomasino-Reed, Kimberly
    Sivo, Gaetano
    Lazo, Manuel
    Rambold, William
    D'Amato, Joseph
    Chinn, Brian
    Blain, Celia
    ADAPTIVE OPTICS SYSTEMS VIII, 2022, 12185