LINEAR DISCRIMINANT ANALYSIS WITH THE RANDOMIZED KACZMARZ METHOD

被引:0
|
作者
Chi, Jocelyn T. [1 ]
Needell, Deanna [2 ]
机构
[1] Univ Colorado Boulder, Dept Appl Math, Boulder, CO 80309 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
classification; stochastic optimization; supervised learning; LOGISTIC-REGRESSION; CLASSIFICATION; MODEL; APPROXIMATION; CONVERGENCE; PREDICTION; ALGORITHM; COHERENCE; BOUNDS;
D O I
10.1137/23M155493X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a randomized Kaczmarz method for linear discriminant analysis (rkLDA), an iterative randomized approach to binary-class Gaussian model linear discriminant analysis (LDA) for very large data. We harness a least squares formulation and mobilize the stochastic gradient descent framework to obtain a randomized classifier with performance that can achieve comparable accuracy to that of full data LDA. We present analysis for the expected change in the LDA discriminant function if one employs the randomized Kaczmarz solution in lieu of the full data least squares solution that accounts for both the Gaussian modeling assumptions on the data and algorithmic randomness. Our analysis shows how the expected change depends on quantities inherent in the data such as the scaled condition number and Frobenius norm of the input data, how well the linear model fits the data, and choices from the randomized algorithm. Our experiments demonstrate that rkLDA can offer a viable alternative to full data LDA on a range of step-sizes and numbers of iterations.
引用
收藏
页码:94 / 120
页数:27
相关论文
共 50 条
  • [31] Preasymptotic convergence of randomized Kaczmarz method
    Jiao, Yuling
    Jin, Bangti
    Lu, Xiliang
    INVERSE PROBLEMS, 2017, 33 (12)
  • [32] Kaczmarz Method for Fuzzy Linear Systems
    Bian, L.
    Zhang, S.
    Wang, S.
    Wang, K.
    RUSSIAN MATHEMATICS, 2021, 65 (12) : 20 - 26
  • [33] Greedy Randomized-Distance Kaczmarz Method for Solving Large Sparse Linear Systems
    Du Y.
    Yin J.
    Zhang K.
    Tongji Daxue Xuebao/Journal of Tongji University, 2020, 48 (08): : 1224 - 1231and1240
  • [34] Linear Convergence of Randomized Kaczmarz Method for Solving Complex-Valued Phaseless Equations
    Huang, Meng
    Wang, Yang
    SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (02): : 989 - 1016
  • [35] On greedy multi-step inertial randomized Kaczmarz method for solving linear systems
    Su, Yansheng
    Han, Deren
    Zeng, Yun
    Xie, Jiaxin
    CALCOLO, 2024, 61 (04)
  • [36] A subset method for improving Linear Discriminant Analysis
    Yao, Chao
    Lu, Zhaoyang
    Li, Jing
    Xu, Yamei
    Han, Jungong
    NEUROCOMPUTING, 2014, 138 : 310 - 315
  • [37] ON GREEDY RANDOMIZED AUGMENTED KACZMARZ METHOD FOR SOLVING LARGE SPARSE INCONSISTENT LINEAR SYSTEMS
    Bai, Zhong-Zhi
    Wu, Wen-Ting
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (06): : A3892 - A3911
  • [38] Randomized Average Kaczmarz Algorithm for Tensor Linear Systems
    Bao, Wendi
    Zhang, Feiyu
    Li, Weiguo
    Wang, Qin
    Gao, Ying
    MATHEMATICS, 2022, 10 (23)
  • [39] Evaluating the Dual Randomized Kaczmarz Laplacian Linear Solver
    Boman, Erik G.
    Deweese, Kevin
    Gilbert, John R.
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2016, 40 (01): : 95 - 107
  • [40] Nonlinear greedy relaxed randomized Kaczmarz method
    Liu, Li
    Li, Weiguo
    Xing, Lili
    Bao, Wendi
    Results in Applied Mathematics, 2022, 16