LINEAR DISCRIMINANT ANALYSIS WITH THE RANDOMIZED KACZMARZ METHOD

被引:0
|
作者
Chi, Jocelyn T. [1 ]
Needell, Deanna [2 ]
机构
[1] Univ Colorado Boulder, Dept Appl Math, Boulder, CO 80309 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
classification; stochastic optimization; supervised learning; LOGISTIC-REGRESSION; CLASSIFICATION; MODEL; APPROXIMATION; CONVERGENCE; PREDICTION; ALGORITHM; COHERENCE; BOUNDS;
D O I
10.1137/23M155493X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a randomized Kaczmarz method for linear discriminant analysis (rkLDA), an iterative randomized approach to binary-class Gaussian model linear discriminant analysis (LDA) for very large data. We harness a least squares formulation and mobilize the stochastic gradient descent framework to obtain a randomized classifier with performance that can achieve comparable accuracy to that of full data LDA. We present analysis for the expected change in the LDA discriminant function if one employs the randomized Kaczmarz solution in lieu of the full data least squares solution that accounts for both the Gaussian modeling assumptions on the data and algorithmic randomness. Our analysis shows how the expected change depends on quantities inherent in the data such as the scaled condition number and Frobenius norm of the input data, how well the linear model fits the data, and choices from the randomized algorithm. Our experiments demonstrate that rkLDA can offer a viable alternative to full data LDA on a range of step-sizes and numbers of iterations.
引用
收藏
页码:94 / 120
页数:27
相关论文
共 50 条
  • [1] Linear convergence of the randomized sparse Kaczmarz method
    Schoepfer, Frank
    Lorenz, Dirk A.
    MATHEMATICAL PROGRAMMING, 2019, 173 (1-2) : 509 - 536
  • [2] Linear convergence of the randomized sparse Kaczmarz method
    Frank Schöpfer
    Dirk A. Lorenz
    Mathematical Programming, 2019, 173 : 509 - 536
  • [3] Extension of an error analysis of the randomized Kaczmarz method for inconsistent linear systems
    Morijiri, Yushi
    Aishima, Kensuke
    Matsuo, Takayasu
    JSIAM LETTERS, 2018, 10 : 17 - 20
  • [4] A probabilistic method of linear discriminant analysis with randomized input
    Chen, Yarui (yrchen@tust.edu.cn), 2016, ICIC Express Letters Office (10):
  • [5] A WEIGHTED RANDOMIZED KACZMARZ METHOD FOR SOLVING LINEAR SYSTEMS
    Steinerberger, Stefan
    MATHEMATICS OF COMPUTATION, 2021, 90 (332) : 2815 - 2826
  • [6] Efficient randomized block Kaczmarz method for linear feasibility
    Niu, Yu-Qi
    Zheng, Bing
    CALCOLO, 2025, 62 (01)
  • [7] Greedy Randomized Kaczmarz Method for Solving Noisy Linear Systems
    Wu W.
    Wu, Wenting (wuwenting@bit.edu.cn), 1600, Science Press (49): : 1466 - 1472
  • [8] A weighted randomized sparse Kaczmarz method for solving linear systems
    Zhang, Lu
    Yuan, Ziyang
    Wang, Hongxia
    Zhang, Hui
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [9] Randomized Kaczmarz method with adaptive stepsizes for inconsistent linear systems
    Zeng, Yun
    Han, Deren
    Su, Yansheng
    Xie, Jiaxin
    NUMERICAL ALGORITHMS, 2023, 94 (03) : 1403 - 1420
  • [10] On greedy randomized block Kaczmarz method for consistent linear systems
    Liu, Yong
    Gu, Chuan-Qing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 616 : 178 - 200