Correlation-based switching mean teacher for semi-supervised medical image segmentation

被引:0
|
作者
Deng, Guiyuhan [1 ,4 ]
Sun, Hao [2 ]
Xie, Wei [1 ,2 ,3 ]
机构
[1] Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smart, 152 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China
[2] Cent China Normal Univ, Sch Comp Sci, 152 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China
[3] Cent China Normal Univ, Natl Language Resources Monitoring & Res Ctr Netwo, 152 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China
[4] Cent China Normal Univ, Wollongong Joint Inst, 152 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Medical image segmentation; Semi-supervised learning; Mean teacher framework; NET; NETWORK;
D O I
10.1016/j.neucom.2025.129818
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The mean teacher framework is one of the mainstream approaches in semi-supervised medical image segmentation. While training together in the traditional mean teacher framework, the teacher model and the student model share the same structure. An Exponential Moving Average (EMA) updating strategy is applied to optimize the teacher model. Although the EMA approach facilitates a smooth training process, it causes the model coupling and error accumulation problems. These issues constrain the model from precisely delineating the regions of pathological structures, especially for the low-contrast regions in medical images. In this paper, we propose anew semi-supervised segmentation model, namely Correlation-based Switching Mean Teacher (CS-MT), which comprises two teacher models and one student model to alleviate these problems. Particularly, two teacher models adopt a switching training strategy at every epoch to avoid the convergence and similarity between the teacher models and the student model. In addition, we introduce a feature correlation module in each model to leverage the similarity information in the feature maps to improve the model's predictions. Furthermore, the stochastic process of CutMix operation destroys the structures of organs in medical images, generating adverse mixed results. We propose an adaptive CutMix manner to mitigate the negative effects of these mixed results in model training. Extensive experiments validate that CS-MT outperforms the state-of-the-art semi-supervised methods on the LA, Pancreas-NIH, ACDC and BraTS 2019 datasets.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] CCA: Contrastive cluster assignment for supervised and semi-supervised medical image segmentation
    Zhu, Jinghua
    Huang, Chengying
    Xi, Heran
    Cui, Hui
    NEURAL NETWORKS, 2025, 188
  • [42] SEMI-SUPERVISED HYPERSPECTRAL IMAGE SEGMENTATION
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 215 - +
  • [43] Error-Correcting Mean-Teacher: Corrections instead of consistency-targets applied to semi-supervised medical image segmentation
    Mendel, Robert
    Rauber, David
    de Souza Jr, Luis A.
    Papa, Joao P.
    Palm, Christoph
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 154
  • [44] S-ACMT: Enhancing Semi-supervised Medical Image Segmentation with SAM as a Cross-Supervised Secondary Teacher
    Lin, Can
    Liu, Yuanzhe
    Wang, Dahao
    Lin, Li
    2024 9TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING, ICSIP, 2024, : 774 - 779
  • [45] Evidence-based uncertainty-aware semi-supervised medical image segmentation
    Chen, Yingyu
    Yang, Ziyuan
    Shen, Chenyu
    Wang, Zhiwen
    Zhang, Zhongzhou
    Qin, Yang
    Wei, Xin
    Lu, Jingfeng
    Liu, Yan
    Zhang, Yi
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [46] Feature similarity learning based on fuzziness minimization for semi-supervised medical image segmentation
    Zhang, Tianlun
    Zhou, Xinlei
    Wang, Debby D.
    Wang, Xizhao
    INFORMATION FUSION, 2024, 106
  • [47] Reliable semi-supervised mutual learning framework for medical image segmentation
    Hang, Wenlong
    Bai, Kui
    Liang, Shuang
    Zhang, Qingfeng
    Wu, Qiang
    Jin, Yukun
    Wang, Qiong
    Qin, Jing
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 99
  • [48] Analysing the effectiveness of a generative model for semi-supervised medical image segmentation
    Rosnati, Margherita
    Ribeiro, Fabio De Sousa
    Monteiro, Miguel
    de Castro, Daniel Coelho
    Glocker, Ben
    MACHINE LEARNING FOR HEALTH, VOL 193, 2022, 193 : 290 - 310
  • [49] ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised Image Segmentation
    Huo, Xinyue
    Xie, Lingxi
    He, Jianzhong
    Yang, Zijie
    Zhou, Wengang
    Li, Houqiang
    Tian, Qi
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 1235 - 1244
  • [50] Contour-aware consistency for semi-supervised medical image segmentation
    Li, Lei
    Lian, Sheng
    Luo, Zhiming
    Wang, Beizhan
    Li, Shaozi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 89