An Improved YOLOv7-Tiny-Based Algorithm for Wafer Surface Defect Detection

被引:0
|
作者
Li, Mengyun [1 ]
Wang, Xueying [1 ]
Zhang, Hongtao [2 ]
Hu, Xiaofeng [1 ]
机构
[1] China Jiliang Univ, Coll Metrol & Measurement Instrument, Hangzhou 310000, Zhejiang, Peoples R China
[2] Zhejiang Sanhua Automot Components Co Ltd, Hangzhou 310000, Zhejiang, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Semiconductor device modeling; Feature extraction; Convolution; Accuracy; Defect detection; Convolutional neural networks; Classification algorithms; Machine learning algorithms; Data models; Computational modeling; YOLOv7-tiny; silicon wafer; object detection; deep learning; RECOGNITION;
D O I
10.1109/ACCESS.2025.3528242
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wafer surface defect detection is a critical component in the chip manufacturing process. To address the shortcomings of manual inspection and the limitations of existing machine learning methods, this paper proposes a wafer defect detection algorithm based on an improved YOLOv7-tiny. First, a coordinate attention (CA) module is incorporated into the feature extraction network to enhance the network's ability to learn features at defect locations. Next, a lightweight convolutional module, ghost shuffle convolution (GSConv), is introduced into the feature fusion network to reduce the network's parameter count while maintaining a certain level of detection accuracy. Finally, the loss function is optimized by adopting IoU with minimum points distance (MPDIoU) to address issues such as small sizes and dense distributions. Experiments conducted on a self-constructed dataset show that the improved algorithm achieved a mean Average Precision (mAP) of 90.1%, representing a 3.2% increase over the original algorithm. The model size is only 5.85MB and the detection speed has been effectively enhanced, providing valuable insights for research in industrial real-time detection applications.
引用
收藏
页码:10724 / 10734
页数:11
相关论文
共 50 条
  • [41] Research on Coal and Gangue Recognition Based on the Improved YOLOv7-Tiny Target Detection Algorithm
    Sui, Yiping
    Zhang, Lei
    Sun, Zhipeng
    Yi, Weixun
    Wang, Meng
    SENSORS, 2024, 24 (02)
  • [42] Surface Defect Detection of Aeroengine Components Based on Improved YOLOv4 Algorithm
    Li Bin
    Wang Cheng
    Wu Jing
    Liu Jichao
    Tong Lijia
    Guo Zhenping
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (14)
  • [43] Strip Steel Surface Defect Detection Based on Improved YOLOv3 Algorithm
    Li W.-G.
    Ye X.
    Zhao Y.-T.
    Wang W.-B.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (07): : 1284 - 1292
  • [44] Surface defect detection algorithm of electronic components based on improved YOLOv5
    Zeng Y.
    Gao F.-Q.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (03): : 455 - 465
  • [45] Steel Surface Defect Detection Algorithm Based on Improved YOLOv8n
    Zhang, Tian
    Pan, Pengfei
    Zhang, Jie
    Zhang, Xiaochen
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [46] Research on strip surface defect detection based on improved YOLOv5 algorithm
    Lv, Shuaishuai
    Tao, Chuanzhen
    Hao, Zhuangzhuang
    Ni, Hongjun
    Hou, Zhengjie
    Li, Xiaoyuan
    Gu, Hai
    Shi, Weidong
    Chen, Linfei
    IRONMAKING & STEELMAKING, 2024, 51 (10) : 1046 - 1064
  • [47] Research on Surface Defect Detection of Strip Steel Based on Improved YOLOv7
    Lv, Baozhan
    Duan, Beiyang
    Zhang, Yeming
    Li, Shuping
    Wei, Feng
    Gong, Sanpeng
    Ma, Qiji
    Cai, Maolin
    SENSORS, 2024, 24 (09)
  • [48] Lightweight rail surface defect detection algorithm based on an improved YOLOv8
    Xu, CanYang
    Liao, Yingying
    Liu, Yongqiang
    Tian, Runliang
    Guo, Tao
    MEASUREMENT, 2025, 242
  • [49] Facial Feature Extraction Algorithm Based on Improved YOLOv7-Tiny
    Yao, Yining
    Wang, Yawen
    Wang, Changyuan
    Zhang, Yibo
    Liu, Tingting
    Wang, Gaofeng
    IEEE ACCESS, 2025, 13 : 25946 - 25957
  • [50] Improved YOLOv7-tiny Lightweight Infrared Vehicle Target Detection Algorithm
    Xu, Xiaoyang
    Gao, Chongyang
    Computer Engineering and Applications, 2024, 60 (01) : 74 - 83